Debugging with GDB

The GNU Source-Level Debugger

Tenth Edition, for GDB version Red Hat Enterprise Linux 8.1.50-1.2.ky3
(GDB)

Richard Stallman, Roland Pesch, Stan Shebs, et al.

(Send bugs and comments on GDB to http://www.gnu.org/software/gdb/bugs/.)
Debugging with GDB
TgXinfo 2017-08-23.19

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
ISBN 978-0-9831592-3-0

Copyright (©) 1988-2018 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Free Software” and “Free
Software Needs Free Documentation”, with the Front-Cover Texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below.

(a) The FSF’s Back-Cover Text is: “You are free to copy and modify this GNU Man-
ual. Buying copies from GNU Press supports the FSF in developing GNU and promoting
software freedom.”

http://www.gnu.org/software/gdb/bugs/

Table of Contents

Summary of GDB 1
Free Software. 1
Free Software Needs Free Documentation..................... 1
Contributors t0 GDBttt et 3

1 A Sample GDB Session........................... 7

2 Getting In and Out of GDB.................... 11
2.1 InvoKing GDB. ...ttt 11

2.1.1 Choosing Files....... ..o 12
2.1.2 Choosing Modeso 13
2.1.3 What ¢DB Does During Startupoo. .. 16
2.2 QUITEING GDB ..ttt 17
2.3 Shell Commandsc.oiiii e 17
2.4 Logging Outputooiii 18

3 GDBCommands.................... ... 19
3.1 Command SYNtaxoeuuuti i 19
3.2 Command Completion............oooiiiiiiiiiiiiiiiiiea. .. 19
3.3 Getting Help ..o 22

4 Running Programs Under GDB................ 25
4.1 Compiling for Debuggingco i 25
4.2 Starting your Program............ i 26
4.3 Your Program’s Arguments........... ...ttt 30
4.4 Your Program’s Environmentl 30
4.5 Your Program’s Working Directory 31
4.6 Your Program’s Input and Output............................. 32
4.7 Debugging an Already-running Process 33
4.8 Killing the Child Process ..., 34
4.9 Debugging Multiple Inferiors and Programs.................... 34
4.10 Debugging Programs with Multiple Threads.................. 37
4.11 Debugging Forks i 41
4.12 Setting a Bookmark to Return to Later....................... 44

4.12.1 A Non-obvious Benefit of Using Checkpoints............. 45

5 Stopping and Continuing...................... 47

5.1 Breakpoints, Watchpoints, and Catchpoints.................... 47
5.1.1 Setting Breakpoints.......... ... 48
5.1.2 Setting Watchpoints.......... ... i 54

5.1.3 Setting Catchpoints........ ..., 56

ii

Debugging with GDB

5.1.4 Deleting Breakpointso, 61
5.1.5 Disabling Breakpointso i 62
5.1.6 Break Conditions......... ...t 63
5.1.7 Breakpoint Command Lists................ 65
5.1.8 Dynamic Printf. o 66
5.1.9 How to save breakpoints to a file.......................... 67
5.1.10 Static Probe Points............. L 68
5.1.11 “Cannot insert breakpoints” 69
5.1.12 “Breakpoint address adjusted...” L 70
5.2 Continuing and Steppingo 70
5.3 Skipping Over Functions and Files............................. 74
5.4 Signals. ... 76
5.5 Stopping and Starting Multi-thread Programs.................. 79
55.1 All-Stop Mode. ... 80
5.5.2 Non-Stop Mode. ... 81
5.5.3 Background Execution............. ... oL 82
5.5.4 Thread-Specific Breakpoints, 83
5.5.5 Interrupted System Calls 83
5.5.6 Observer Modeo 84
Running programs backward.................. 87

Recording Inferior’s Execution

and Replaying It 89
Examining the Stack........................... 97
8.1 Stack Frames...... ..o 97
8.2 Backtraces 98
8.3 Selecting a Frame i 100
8.4 Information About a Frame 101
8.5 Management of Frame Filters................................. 102
Examining Source Files 105
9.1 Printing Source Lines. ... 105
9.2 Specifying a Location.......o, 106
9.2.1 Linespec Locations ..., 106
9.2.2 Explicit Locations ... 107
9.2.3 Address Locations...........ooiiiiiiiii i 108
9.3 Editing Source Files...........coo i 109
9.3.1 Choosing your Editor..........ot 109
9.4 Searching Source Files........ ... i i 110
9.5 Specifying Source Directories............. ... i, 110

9.6 Source and Machine Code ...t 113

10 Examining Data.......................... ... 119
10.1 EXPressionsuuuiittettt et 121
10.2 Ambiguous EXpressionsooviiiiiiiiiiii i, 122
10.3 Program Variables o i 123
10.4 Artificial Arrays.ot 125
10.5 Output Formats. ... 126
10.6 Examining Memoryccooiiiiiiiiiiiiiiiiii 128
10.7 Automatic Display ... 130
10.8 Print Settings.o 132
10.9 Pretty Printing. ... 140

10.9.1 Pretty-Printer Introduction............................. 140
10.9.2 Pretty-Printer Example........... L 140
10.9.3 Pretty-Printer Commands....................... 141
10.10 Value History . ..o 142
10.11 Convenience Variables.............. ..o i 143
10.12 Convenience Functions............. ..., 145
10.13 Registers. ... e 148
10.14 Floating Point Hardwareo i, 150
10.15 Vector Unit.... ..o e 150
10.16 Operating System Auxiliary Information 150
10.17 Memory Region Attributes............ i 152
10.17.1 Attributes. ... 153
10.17.1.1 Memory Access Mode ..., 153
10.17.1.2 Memory Access SIZ€.......ovviriieeniinennnnn... 153
10.17.1.3 Data Cache ... 154
10.17.2 Memory Access Checking............ ...t 154
10.18 Copy Between Memory and a File.................... 154
10.19 How to Produce a Core File from Your Program............ 155
10.20 Character Setsvu e 156
10.21 Caching Data of Targets ..o, 159
10.22 Search Memoryot 160
10.23 Value SizeS. .. .oovnni i e 161

11 Debugging Optimized Code 163
11.1 Inline Functions......... o i 163
11.2 Tail Call Framesoooiie i s 164

12 C Preprocessor Macros 167

13 Tracepoints............... 171
13.1 Commands to Set Tracepoints..............coiiiiiiiin... 171

13.1.1 Create and Delete Tracepoints..................cooo... 172
13.1.2 Enable and Disable Tracepoints......................... 174
13.1.3 Tracepoint Passcounts...............oooiiiiiiiiii .. 174
13.1.4 Tracepoint Conditions.............c.oviiiiiiiiienna. .. 175
13.1.5 Trace State Variables................ 175

13.1.6 Tracepoint Action Lists..................oooiii... 176

iii

iv Debugging with GDB

13.1.7 Listing Tracepoints...........cooviiiiiiiiiiiiiiina... 178
13.1.8 Listing Static Tracepoint Markers....................... 179
13.1.9 Starting and Stopping Trace Experiments............... 180
13.1.10 Tracepoint Restrictions...................co i 182
13.2 Using the Collected Data................. .o it 183
1321 tfind m. .o 183
13.2.2 BAUMP . vttt et e 185
13.2.3 save tracepoints filename........................... 186
13.3 Convenience Variables for Tracepoints....................... 186
13.4 Using Trace Files. ... 187

14 Debugging Programs That Use Overlays.. 189

14.1 How Overlays Work 189
14.2 Overlay Commands ..ottt 190
14.3 Automatic Overlay Debugging.............. 192
14.4 Overlay Sample Program............. oo, 193
15 Using ¢DB with Different Languages....... 195
15.1 Switching Between Source Languages........................ 195
15.1.1 List of Filename Extensions and Languages............. 195
15.1.2 Setting the Working Language.......................... 196
15.1.3 Having GDB Infer the Source Language 196
15.2 Displaying the Language ..., 196
15.3 Type and Range Checking........... ..., 197
15.3.1 An Overview of Type Checking......................... 197
15.3.2 An Overview of Range Checking........................ 198
15.4 Supported Languages ...t 199
1541 Cand CH+ .o 199
15.4.1.1 C and C++ Operators..........ccovviiiiiiieennn.. 199
15.4.1.2 Cand C++ Constants.coovvueiiennene .. 201
15.4.1.3 CH++ EXpPressions.ouverreniiineniiennnn.. 202
15.4.1.4 Cand C++ Defaults ...l 203
15.4.1.5 C and C++ Type and Range Checks................ 203
15.4.1.6 cDBand C....oiii 203
15.4.1.7 GDB Features for C++........... ..., 203
15.4.1.8 Decimal Floating Point format..................... 205
1542 D 205
15.4.3 GO et 205
15.4.4 Objective-C ..ot 206
15.4.4.1 Method Names in Commands...................... 206
15.4.4.2 The Print Command With Objective-C............ 207
15.4.5 OpenCL C ..o e 207
15.4.5.1 OpenCL C Datatypes.........cooviiiiiiiiiiia... 207
15.4.5.2 OpenCL C EXpressionscoovveeeenennnnnnnn. 207
15.4.5.3 OpenCL C Operators.........cocvviuieeeiineeennn.. 207
15.4.6 Fortran 207

15.4.6.1 Fortran Operators and Expressions 208

15.4.6.2 Fortran Defaults. 208

15.4.6.3 Special Fortran Commands 208
15.4.7 Pascal.o 208
15.4.8 RUSE . oot 208
15.4.9 Modula-2 209

15.4.9.1 Operatorsvouuteeiie i, 209

15.4.9.2 Built-in Functions and Procedures................. 211

15.4.9.3 Constantsouuiiiiiii i 212

15.4.9.4 Modula-2 Typescoovuriiiiiiiiiiiii .. 212

15.4.9.5 Modula-2 Defaults............... ... it 214

15.4.9.6 Deviations from Standard Modula-2 214

15.4.9.7 Modula-2 Type and Range Checks................. 214

15.4.9.8 The Scope Operators :: and 215

15.4.9.9 c¢pBand Modula-2 ... 215
154910 Ada. ..o 215

15.4.10.1 Introduction............. ..., 215

15.4.10.2 Omissions from Ada................ 216

15.4.10.3 Additions to Ada ... 217

15.4.10.4 Overloading support for Ada 219

15.4.10.5 Stopping at the Very Beginning................... 219

15.4.10.6 Ada Exceptionsooiiiiiiiiiiiiiiia... 219

15.4.10.7 Extensions for Ada Tasks......................... 220

15.4.10.8 Tasking Support when Debugging Core Files...... 223

15.4.10.9 Tasking Support when using the Ravenscar Profile.. 223

15.4.10.10 Ada Settings.........ccoiiiiiiiiiiiii 223

15.4.10.11 Known Peculiarities of Ada Mode 224

15.5 Unsupported Languages..........c.coiiiiiiiiiiii ... 225
16 Examining the Symbol Table............... 227
17 Altering Execution 239

17.1 Assignment to Variables........... L. 239

17.2 Continuing at a Different Address 240

17.3 Giving your Program a Signal 241

17.4 Returning from a Function 242

17.5 Calling Program Functions............. 243

17.5.1 Calling functions with no debug info.................... 244
17.6 Patching Programs............ i i 244
17.7 Compiling and injecting code in GDB 245
17.7.1 Compilation options for the compile command......... 246
17.7.2 Caveats when using the compile command 247

17.7.3 Compiler search for the compile command 249

vi Debugging with GDB

18 GDB Files........ ... o 251
18.1 Commands to Specify Files............o L. 251
18.2 File Cachingo e 259
18.3 Debugging Information in Separate Files..................... 260
18.4 Debugging information in a special section................... 264
18.5 Index Files Speed Up GDB. ...ttt 264
18.6 Errors Reading Symbol Files 265
18.7 GDB Data Files.......ooouiiiii i 267

19 Specifying a Debugging Target 269
19.1 Active Targetsovn et e 269
19.2 Commands for Managing Targets......................o..... 269
19.3 Choosing Target Byte Order......... 272

20 Debugging Remote Programs 273
20.1 Connecting to a Remote Target 273

20.1.1 Types of Remote Connections 273
20.1.2 Host and Target Files ...t 274
20.1.3 Remote Connection Commands......................... 275
20.2 Sending files to a remote system............ ... 276
20.3 Using the gdbserver Program............... ..., 277
20.3.1 Running gdbserver 277
20.3.1.1 Attaching to a Running Program 278
20.3.1.2 TCP port allocation lifecycle of gdbserver......... 278
20.3.1.3 Other Command-Line Arguments for gdbserver ... 279
20.3.2 Connecting to gdbserver..........c..coviiiiiinnenn... 280
20.3.3 Monitor Commands for gdbserver 280
20.3.4 Tracepoints support in gdbserver 281
20.4 Remote Configuration........ ... 282
20.5 Implementing a Remote Stub.......... 288
20.5.1 What the Stub Can Do for You......................... 289
20.5.2 What You Must Do for the Stub................ 290
20.5.3 Putting it All Together............ 291

21 Configuration-Specific Information......... 293

211 Nabive .ot 293
21.1.1 BSD libkvm Interface, 293
21.1.2 Process Information i 293
21.1.3 Features for Debugging DIJGPP Programs................ 295
21.1.4 Features for Debugging MS Windows PE Executables. .. 297

21.1.4.1 Support for DLLs without Debugging Symbols..... 299
21.1.4.2 DLL Name Prefixes.............oooiiiiiiiiiia. .. 299
21.1.4.3 Working with Minimal Symbols.................... 300
21.1.5 Commands Specific to ¢NU Hurd Systems 300
21,16 Darwin.o.oiini i e 303
21.2 Embedded Operating Systems...............cooiiiiiia... 303

21.3 Embedded Processorsoouiii 303

vii

21.3.1 Synopsys ARC ... i 304
21.3.2 ARM . 304
21.3.3 MOB8K ..o 305
21.3.4 MicroBlaze......o 305
21.3.5 MIPS Embedded. ... 306
21.3.6 OpenRISC 1000 covviitii e 306
21.3.7 PowerPC Embedded................. ... 307
21.3.8 Atmel AVR ... 308
21.3.9 CRIS. .. 308
21.3.10 Renesas Super-H o i 308
21.4 Architectures.oviii e 309
21.4.1 AArchG4o 309
21.4.2 x86 Architecture-specific Issues......................... 309
21.4.2.1 Intel Memory Protection Extensions (MPX)........ 309
21.4.3 Alpha. ..o 310
2144 MIPS . ottt e 311
21.4.5 HPPA . .. 312
21.4.6 Cell Broadband Engine SPU architecture............... 313
21.4.7 PowerPC . ..o e 313
21.4.8 Nios IL.. ..o 314
21.4.9 Sparcha 314
21.4.9.1 ADI Supportoouiiiii 314

22 Controlling GDB ..., 317
221 Prompt ... 317
22.2 Command Editing. ... 317
22.3 Command History......... ..., 318
22,4 SCIEEI SIZE.ttt ettt et e 319
225 NUmbers. .. .o 320
22.6 Configuring the Current ABI............ 321
22.7 Automatically loading associated files........................ 322
22.7.1 Automatically loading init file in the current directory .. 324
22.7.2 Automatically loading thread debugging library......... 324
22.7.3 Security restriction for auto-loading..................... 325
22.7.4 Displaying files tried for auto-load 326
22.8 Optional Warnings and Messages..............coooeviiiao... 327
22.9 Optional Messages about Internal Happenings............... 328
22.10 Other Miscellaneous Settings............c.oovviiiiiio.... 333
23 Extending GDB............................... 335
23.1 Canned Sequences of Commandscovvina... 335
23.1.1 User-defined Commands...............cooviiiiean... 335
23.1.2 User-defined Command Hooks.......................... 337
23.1.3 Command Filesco i 338
23.1.4 Commands for Controlled Output 340
23.1.5 Controlling auto-loading native GDB scripts............. 341

23.2 Extending GDB using Python............., 342

viii Debugging with GDB

23.2.1 Python Commands............ccoiiiiiiiiieiiiineann.. 342
23.2.2 Python APIL. 343
23.2.2.1 BasicPython......... i 343
23.2.2.2 Exception Handling., 347
23.2.2.3 Values From Inferior............ 348
23.2.24 TypesIn Python oo ... 353
23.2.2.5 Pretty Printing APL...... 357
23.2.2.6 Selecting Pretty-Printers.............., 359
23.2.2.7 Writing a Pretty-Printer............. 359
23.2.2.8 Type Printing APT....... 361
23.2.2.9 Filtering Frames. it 362
23.2.2.10 Decorating Frames.............l 364
23.2.2.11 Writing a Frame Filter 367
23.2.2.12 Unwinding Frames in Python..................... 371
23.2.2.13 Xmethods In Python 373
23.2.2.14 Xmethod APIL....... i, 374
23.2.2.15 Writing an Xmethod 375
23.2.2.16 Inferiors In Python............ 378
23.2.2.17 Events In Python............ 379
23.2.2.18 Threads In Python 383
23.2.2.19 Recordings In Python 384
23.2.2.20 Commands In Python...................... 388
23.2.2.21 Parameters In Python...................... 391
23.2.2.22 Writing new convenience functions................ 394
23.2.2.23 Program Spaces In Python 394
23.2.2.24 Objfiles In Python...........o ... 396
23.2.2.25 Accessing inferior stack frames from Python....... 398
23.2.2.26 Accessing blocks from Python..................... 401
23.2.2.27 Python representation of Symbols................. 403
23.2.2.28 Symbol table representation in Python............ 406
23.2.2.29 Manipulating line tables using Python............ 407
23.2.2.30 Manipulating breakpoints using Python........... 408
23.2.2.31 Finish Breakpoints 412
23.2.2.32 Python representation of lazy strings.............. 412
23.2.2.33 Python representation of architectures............ 413
23.2.3 Python Auto-loading il 414
23.2.4 Python modules...........co i 414
23.2.4.1 gdb.printing..........o i 415
23.2.4.2 gdbAypes. .o 415
23.2.4.3 gdb.prompt. ... 416
23.3 Extending GDB using Guile............ ... it 417
23.3.1 Guile Introduction. ... 417
23.3.2 Guile Commands..........ooviiiiiiiiiiiii i, 418
23.3.3 Guile AP ... 418
23.3.3.1 BasicGuile............ 418
23.3.3.2 Guile Configuration...............ccoooiiiii... 420
23.3.3.3 GDB Scheme Data Types...........ccoooiiiiia... 421

23.3.3.4 Guile Exception Handling 422

23.3.3.5 Values From Inferior In Guile...................... 424
23.3.3.6 Arithmetic In Guile..................... 429
23.3.3.7 TypesIn Guile i 430
23.3.3.8 Guile Pretty Printing APT......................... 435
23.3.3.9 Selecting Guile Pretty-Printers..................... 437
23.3.3.10 Writing a Guile Pretty-Printer.................... 437
23.3.3.11 Commands In Guile.............................. 439
23.3.3.12 Parameters In Guile.................. 443
23.3.3.13 Program Spaces In Guile 446
23.3.3.14 ObjfilesIn Guile........... ...l 447
23.3.3.15 Accessing inferior stack frames from Guile......... 447
23.3.3.16 Accessing blocks from Guile....................... 450
23.3.3.17 Guile representation of Symbols................... 452
23.3.3.18 Symbol table representation in Guile.............. 455
23.3.3.19 Manipulating breakpoints using Guile............. 456
23.3.3.20 Guile representation of lazy strings................ 460
23.3.3.21 Guile representation of architectures.............. 461
23.3.3.22 Disassembly In Guile................ 463
23.3.3.23 I/O Ports in Guile...............cooiiiiii.. 463
23.3.3.24 Memory Ports in Guile.................. 464
23.3.3.25 Tterators In Guile........... L. 465
23.3.4 Guile Auto-loading 467
23.3.5 Guile Modules....... ... i 467
23.3.5.1 Guile Printing Module.................., 467
23.3.5.2 Guile Types Module...............c.oooiiiiiiii.n, 468

23.4 Auto-loading extensionscooiiiiiiiiiiiii 468
23.4.1 The objfile-gdb.extfile............. 469
23.4.2 The .debug_gdb_scripts section 470
23.4.2.1 Script File Entries............. ..o ool 470
23.4.2.2 Script Text Entries 471
23.4.3 Which flavor to choose?o L. 471
23.5 Multiple Extension Languages............c.cooiiiiin... 472
23.5.1 Python comes first i 472
23.6 Creating new spellings of existing commands 472
24 Command Interpreters...................... 475
25 aDB Text User Interface..................... 477
25.1 TUL OVEIVIEW . .ottt ettt e 477
25.2 TUI Key Bindings. ..ot 478
25.3 TUI Single Key Mode ... 479
25.4 TUl-specific Commandsoooiiiiiiiiiiiennn... 479
25.5 TUI Configuration Variables................. ..., 481

26 Using GDB under GNU Emacs................ 483

ix

X Debugging with GDB

27 The ¢pB/MI Interface........................ 485
Function and Purposeo 485
Notation and Terminologyc..ooiiiiiiiiii .. 485
27.3 GDB/MI General Design ..., 485

27.3.1 Context management...............cooiiiiiiiiiiiaa.. 486
27.3.1.1 Threads and Frames............................... 486
27.3.1.2 Language.......coouuiiiiiiii i 487

27.3.2 Asynchronous command execution and non-stop mode .. 487

27.3.3 Thread groupso.ueiiiiiiiii i 488

27.4 GDB/MI Command Syntax..............coooiiiiiiianan... 488
27.4.1 GDB/MI Input Syntax ... 489
27.4.2 @aDB/MI Output Syntax.............coooiiiiiiiii... 489
27.5 @&pB/MI Compatibility with CLI..................co ... 491
27.6 GDB/MI Development and Front Ends 491
27.7 GDpB/MI Output Records 492
27.7.1 GDB/MI Result Records. ...l 492
27.7.2 @DB/MI Stream Records......................oooL 492
27.7.3 GDB/MI Async Records. ..., 493
27.7.4 GDB/MI Breakpoint Information..................... ... 497
27.7.5 GDB/MI Frame Information...................... 498
27.7.6 GpB/MI Thread Information............................ 499
27.7.7 GpB/MI Ada Exception Information 499
27.8 Simple Examples of GDB/MI Interaction 499
27.9 GpB/MI Command Description Format 500
27.10 GDB/MI Breakpoint Commands 501
27.11 ¢pB/MI Catchpoint Commandso...... 511

27.11.1 Shared Library GbB/MI Catchpoints................... 511

27.11.2 Ada Exception GDB/MI Catchpoints................... 512
27.12 GDB/MI Program Contextc.ooiiiiiiiii... 513
27.13 GDpB/MI Thread Commands ..., 516
27.14 c¢pB/MI Ada Tasking Commands....................oo... 517
27.15 GDB/MI Program Execution...............c.ooiiiiia... 518
27.16 &pB/MI Stack Manipulation Commands.................... 525
27.17 GDB/MI Variable Objects.t 531
27.18 GDB/MI Data Manipulation 541
27.19 GpB/MI Tracepoint Commands.oovuvuieiin.... 550
27.20 GpB/MI Symbol Query Commandsc.ooin.... 555
27.21 GpB/MI File Commands. ... 556
27.22 GpB/MI Target Manipulation Commands................... 558
27.23 GpB/MI File Transfer Commands..................oooa... 562
27.24 Ada Exceptions GDB/MI Commands........................ 563
27.25 GDB/MI Support Commands ..., 563

27.26 Miscellaneous GDB/MI Commands.......................... 565

28 GDB Annotations............................. 573
28.1 What is an Annotation?........... i i 573
28.2 The Server Prefixo 574
28.3 Annotation for GDB Input............ ... 574
28.4 BTOTS. .ottt Y6
28.5 Invalidation Notices......... ..ol 575
28.6 Running the Program i 575
28.7 Displaying Sourceouuiiiiiiii i 576

29 JIT Compilation Interface.................. 577
29.1 JIT Declarationsouuueiint i 577
29.2 Registering Code........oiiuiiiiii 578
29.3 Unregistering Code...... ..o, 578
29.4 Custom Debug Info i i 578

29.4.1 Using JIT Debug Info Readers.......................... 579
29.4.2 Writing JIT Debug Info Readers........................ 579

30 In-Process Agent 581

30.1 In-Process Agent Protocol............ 581
30.1.1 TIPA Protocol Objects........ooviiiiiiiiiiiiii .. 582
30.1.2 IPA Protocol Commandscoooiiiiiiii... 583

31 Reporting Bugsin GDB...................... 585
31.1 Have You Found a Bug?........... ... o i, 585
31.2 How to Report Bugs ..ot 585

Appendix A In Memoriam 589

Appendix B Formatting Documentation...... 591

Appendix C Installing GDB..................... 593
C.1 Requirements for Building GDB ...t 593
C.2 Invoking the GDB configure Script.................... ... 594
C.3 Compiling GDB in Another Directory......................... 595
C.4 Specifying Names for Hosts and Targets...................... 596
C.5b configure Options.........c.oovviiiiiiiiiiiiiiii .. 597
C.6 System-wide configuration and settings....................... 598

C.6.1 Installed System-wide Configuration Scripts............. 598

Appendix D Maintenance Commands......... 601

xi

xii Debugging with GDB

Appendix E GDB Remote Serial Protocol 611
E.l OVerview ... 611
E.2 Packets 612
E.3 Stop Reply Packets ... 623
E.4 General Query Packets.......... ... i 627
E.5 Architecture-Specific Protocol Details 652

E.5.1 ARM-specific Protocol Details 652
E.5.1.1 ARM Breakpoint Kinds......................o..... 652

E.5.2 MIPS-specific Protocol Details........................... 652
E.5.2.1 MIPS Register Packet Format....................... 652
E.5.2.2 MIPS Breakpoint Kinds 652

E.6 Tracepoint Packets............c i i 652
E.6.1 Relocate instruction reply packet........................ 659
E.7 Host I/O Packets 659
E.8 Interrupts.cooooiiiii e 661
E.9 Notification Packets........... .. i 662
E.10 Remote Protocol Support for Non-Stop Mode 664
E.11 Packet Acknowledgment 665
E.12 Examples....... ... 665
E.13 File-I/O Remote Protocol Extension 666
E.13.1 File-I/O OVerviewoooiuiiiiiiiiiiiiiiiiaan.. 666
E.13.2 Protocol Basicso 666
E.13.3 The F Request Packet............. ... ool 667
E.13.4 TheF Reply Packet........ .o i, 667
E.13.5 The ‘Ctrl-C" MeSSage.cuvurutiiieniieennn.. 668
E.13.6 Comsole I/Oo 668
E.13.7 List of Supported Calls.................oiiiiiii.. 668

103 0758 668

ClOSE . o 670

TRA . . ottt 670

WTIbE . oot 670

ISEEK . oot 671
TEIAIIIE . . o o v ettt et ettt e e e e e e e e e e e e 671
unlink. ... 672
stat/fstato 672
gettimeofday 673
1ALy oot 673
SYSUEIIL . . 673
E.13.8 Protocol-specific Representation of Datatypes 674
Integral Datatypeso 674
Pointer Values i 674
Memory Transfer....... ... i 674
struct stat. ... 675
struct timeval ... 675
E.13.9 Constants.o.ueiiiii i 676
Open Flags ... 676
mode_t Valueso 676

Errno Values 676

Lseek Flags ..o 677
Lmits .o 677
E.13.10 File-I/O Examples., 677
E.14 Library List Format i i i 677
E.15 Library List Format for SVR4 Targets 678
E.16 Memory Map Format i 679
E.17 Thread List Format................. i i i 680
E.18 Traceframe Info Format...........o ... 680
E.19 Branch Trace Format oo i, 681
E.20 Branch Trace Configuration Format......................... 682

Appendix F The GDB Agent

Expression Mechanism......................... 683
F.1 General Bytecode Design.................ooiiiiiiiiiii... 683
F.2 Bytecode Descriptions. ..., 685
F.3 Using Agent EXpressions........ ... 690
F.4 Varying Target Capabilities 691
F.5 Rationale..... 691
Appendix G Target Descriptions............... 695
G.1 Retrieving Descriptions, 695
G.2 Target Description Format........... o oiia.. 695
G.2.1 Inclusion. ..o 696
G.2.2 Architecture..........c.oiiiiiin e 696
G.2.3 OS ABI. ..o 697
G.2.4 Compatible Architecture.............. 697
G.2.5 Features..... ..o 697
G.2.6 YPeS « ettt 697
G.2.7 RegISters . ..ot 698
G.3 Predefined Target Types......coooiiiiiiiiiiiiiiiiiii.. 699
G.4 Enum Target Typescovuniiii e 700
G.5 Standard Target Features................ .o ... 700
G.5.1 AArch64 Features......... ..., 701
G.5.2 ARC Featuresc.ovviiiiiii e 701
G.5.3 ARM Features.........c.oouiiiiiiiiii i 702
G.5.4 1386 Featureso 702
G.5.5 MicroBlaze Features i i 703
G.5.6 MIPS Featurescooiuuiiiiiiiiiiiiiiiiiean 703
G.5.7 M68K Featuresooiiiiiiiiiiii i 704
G.5.8 NDS32 Featuresoouiiiiiii s 704
G.5.9 NiosIT Features........oouuiiiiiiiiiiiii .. 704
G.5.10 Openrisc 1000 Featurescooiiiiiiiiii ... 704
G.5.11 PowerPC Features......... ..., 704
G.5.12 S/390 and System z Featuresooo.... 705
G.5.13 Sparc Features........ ... 705

G.5.14 TMS320C6x Featuresoovuiiii . 706

xiii

xiv Debugging with GDB

Appendix H Operating System Information .. 707

H.1 Process LSt e 707
Appendix I Trace File Format 709
Appendix J .gdb_index section format........ 711
Appendix K Manual pages 715

Appendix L GNU GENERAL
PUBLIC LICENSE 723

Appendix M GNU Free Documentation License .. 735
Concept Index ..., 743

Command, Variable, and Function Index....... 759

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on “inside”
another program while it executes—or what another program was doing at the moment it
crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you
catch bugs in the act:
e Start your program, specifying anything that might affect its behavior.
e Make your program stop on specified conditions.
e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the effects of
one bug and go on to learn about another.

You can use GDB to debug programs written in C and C++. For more information, see
Section 15.4 [Supported Languages|, page 199. For more information, see Section 15.4.1 [C
and C++|, page 199.

Support for D is partial. For information on D, see Section 15.4.2 [D], page 205.

Support for Modula-2 is partial. For information on Modula-2, see Section 15.4.9
[Modula-2], page 209.

Support for OpenCL C is partial. For information on OpenCL C, see Section 15.4.5
[OpenCL CJ, page 207.

Debugging Pascal programs which use sets, subranges, file variables, or nested functions
does not currently work. GDB does not support entering expressions, printing values, or
similar features using Pascal syntax.

GDB can be used to debug programs written in Fortran, although it may be necessary
to refer to some variables with a trailing underscore.

GDB can be used to debug programs written in Objective-C, using either the Ap-
ple/NeXT or the GNU Objective-C runtime.

Free Software

GDB is free software, protected by the GNU General Public License (GPL). The GPL gives
you the freedom to copy or adapt a licensed program—but every person getting a copy also
gets with it the freedom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical software companies use
copyrights to limit your freedoms; the Free Software Foundation uses the GPL to preserve
these freedoms.

Fundamentally, the General Public License is a license which says that you have these
freedoms and that you cannot take these freedoms away from anyone else.

Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in the software—it is the
lack of good free documentation that we can include with the free software. Many of our
most important programs do not come with free reference manuals and free introductory

2 Debugging with GDB

texts. Documentation is an essential part of any software package; when an important free
software package does not come with a free manual and a free tutorial, that is a major gap.
We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are non-free.
How did this come about? Because the authors of those manuals published them with
restrictive terms—no copying, no modification, source files not available—which exclude
them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the last.
Many times we have heard a GNU user eagerly describe a manual that he is writing, his
intended contribution to the community, only to learn that he had ruined everything by
signing a publication contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not price. The problem
with the non-free manual is not that publishers charge a price for printed copies—that in
itself is fine. (The Free Software Foundation sells printed copies of manuals, too.) The
problem is the restrictions on the use of the manual. Free manuals are available in source
code form, and give you permission to copy and modify. Non-free manuals do not allow
this.

The criteria of freedom for a free manual are roughly the same as for free software.
Redistribution (including the normal kinds of commercial redistribution) must be permitted,
so that the manual can accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too. When people mod-
ify the software, adding or changing features, if they are conscientious they will change
the manual too—so they can provide accurate and clear documentation for the modified
program. A manual that leaves you no choice but to write a new manual to document a
changed version of the program is not really available to our community.

Some kinds of limits on the way modification is handled are acceptable. For example,
requirements to preserve the original author’s copyright notice, the distribution terms, or
the list of authors, are ok. It is also no problem to require modified versions to include
notice that they were modified. Even entire sections that may not be deleted or changed
are acceptable, as long as they deal with nontechnical topics (like this one). These kinds of
restrictions are acceptable because they don’t obstruct the community’s normal use of the
manual.

However, it must be possible to modify all the technical content of the manual, and then
distribute the result in all the usual media, through all the usual channels. Otherwise, the
restrictions obstruct the use of the manual, it is not free, and we need another manual to
replace it.

Please spread the word about this issue. Our community continues to lose manuals
to proprietary publishing. If we spread the word that free software needs free reference
manuals and free tutorials, perhaps the next person who wants to contribute by writing
documentation will realize, before it is too late, that only free manuals contribute to the
free software community.

If you are writing documentation, please insist on publishing it under the GNU Free
Documentation License or another free documentation license. Remember that this deci-
sion requires your approval—you don’t have to let the publisher decide. Some commercial
publishers will use a free license if you insist, but they will not propose the option; it is up

Summary of GDB 3

to you to raise the issue and say firmly that this is what you want. If the publisher you
are dealing with refuses, please try other publishers. If you're not sure whether a proposed
license is free, write to licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted manuals and
tutorials by buying them, and particularly by buying copies from the publishers that paid
for their writing or for major improvements. Meanwhile, try to avoid buying non-free
documentation at all. Check the distribution terms of a manual before you buy it, and
insist that whoever seeks your business must respect your freedom. Check the history of
the book, and try to reward the publishers that have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation published by other
publishers, at http://www.fsf.org/doc/other-free-books.html.

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs. Many
others have contributed to its development. This section attempts to credit major con-
tributors. One of the virtues of free software is that everyone is free to contribute to it;
with regret, we cannot actually acknowledge everyone here. The file ChangeLog in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends
(or enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their many labors as thankless, we particularly thank those
who shepherded GDB through major releases: Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0,
5.3, 5.2, 5.1 and 5.0); Jim Blandy (release 4.18); Jason Molenda (release 4.17); Stan Shebs
(release 4.14); Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9); Stu Grossman
and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4); John Gilmore (releases 4.3, 4.2, 4.1,
4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1,
and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with significant
additional contributions from Per Bothner and Daniel Berlin. James Clark wrote the aNU
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much general
update work leading to release 3.0).

GDB uses the BFD subroutine library to examine multiple object-file formats; BFD was
a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John
Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support
for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner,
Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete
contributed Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki

mailto:licensing@gnu.org
http://www.fsf.org/doc/other-free-books.html

4 Debugging with GDB

Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support. David Johnson con-
tributed Encore Umax support. Jyrki Kuoppala contributed Altos 3068 support. Jeff
Law contributed HP PA and SOM support. Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support. Bob Rusk contributed Harris
Nighthawk CX-UX support. Chris Smith contributed Convex support (and Fortran de-
bugging). Jonathan Stone contributed Pyramid support. Michael Tiemann contributed
SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould Powern-
ode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry
support. Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K GNU/Linux support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging. Intel Corporation, Wind River Systems, AMD, and ARM contributed remote
debugging modules for the 1960, VxWorks, A29K UDI, and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2 sup-
port, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vrd4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for H8/300,
H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vrdxxx, and VrHxxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R /D proces-
sors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.
Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

The following people at the Hewlett-Packard Company contributed support for the PA-
RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0 (narrow mode), HP’s implementation
of kernel threads, HP’s aC++ compiler, and the Text User Interface (nee Terminal User
Interface): Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann, Satish
Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase provided HP-specific
information in this manual.

DJ Delorie ported GDB to MS-DOS, for the DJGPP project. Robert Hoehne made
significant contributions to the DJGPP port.

Cygnus Solutions has sponsored GDB maintenance and much of its development since
1991. Cygnus engineers who have worked on GDB fulltime include Mark Alexander, Jim
Blandy, Per Bothner, Kevin Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin
Hunt, Jim Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek Radouch, Keith Seitz,
Stan Shebs, David Taylor, and Elena Zannoni. In addition, Dave Brolley, lan Carmichael,
Steve Chamberlain, Nick Clifton, JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank
Figler, Doug Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff Holcomb,
Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner, Jason Merrill, Catherine
Moore, Drew Moseley, Ken Raeburn, Gavin Romig-Koch, Rob Savoye, Jamie Smith, Mike
Stump, Ian Taylor, Angela Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim
Wilson, and David Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for Cygnus Solu-
tions, implemented the original GDB/MI interface.

Jim Blandy added support for preprocessor macros, while working for Red Hat.

Andrew Cagney designed GDB’s architecture vector. Many people including Andrew
Cagney, Stephane Carrez, Randolph Chung, Nick Duffek, Richard Henderson, Mark Ket-
tenis, Grace Sainsbury, Kei Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab,
Jason Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped with the
migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented GDB’s unwinder framework,
this consisting of a fresh new design featuring frame IDs, independent frame sniffers, and
the sentinel frame. Mark Kettenis implemented the DWARF 2 unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and trad unwinders.
The architecture-specific changes, each involving a complete rewrite of the architecture’s
frame code, were carried out by Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew
Cagney, Stephane Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei Sakamoto, Yoshinori
Sato, Michael Snyder, Corinna Vinschen, and Ulrich Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from Tensilica, Inc.
contributed support for Xtensa processors. Others who have worked on the Xtensa port of
GDB in the past include Steve Tjiang, John Newlin, and Scott Foehner.

Michael Eager and staff of Xilinx, Inc., contributed support for the Xilinx MicroBlaze
architecture.

Initial support for the FreeBSD/mips target and native configuration was developed
by SRI International and the University of Cambridge Computer Laboratory under
DARPA/AFRL contract FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH

research programme.

The original port to the OpenRISC 1000 is believed to be due to Alessandro Forin and
Per Bothner. More recent ports have been the work of Jeremy Bennett, Franck Jullien,
Stefan Wallentowitz and Stafford Horne.

1 A Sample GDB Session

You can use this manual at your leisure to read all about GDB. However, a handful of
commands are enough to get started using the debugger. This chapter illustrates those
commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

One of the preliminary versions of GNU m4 (a generic macro processor) exhibits the
following bug: sometimes, when we change its quote strings from the default, the commands
used to capture one macro definition within another stop working. In the following short m4
session, we define a macro foo which expands to 0000; we then use the m4 built-in defn to
define bar as the same thing. However, when we change the open quote string to <QUOTE>
and the close quote string to <UNQUOTE>, the same procedure fails to define a new synonym
baz:

$ cd gnu/m4

$./m4
define(f00,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

Ctrl-d

m4: End of input: O: fatal error: EOF in string

Let us use GDB to try to see what is going on.

$ gdb m4

GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.

There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB Red Hat Enterprise Linux 8.1.50-1.2.ky3, Copyright 1999 Free Software Foundation, Inc...

(gdb)

GDB reads only enough symbol data to know where to find the rest when needed; as a result,
the first prompt comes up very quickly. We now tell GDB to use a narrower display width
than usual, so that examples fit in this manual.

(gdb) set width 70
We need to see how the m4 built-in changequote works. Having looked at the source, we

know the relevant subroutine is m4_changequote, so we set a breakpoint there with the
GDB break command.

(gdb) break m4_changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

8 Debugging with GDB

Using the run command, we start m4 running under GDB control; as long as control does
not reach the m4_changequote subroutine, the program runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/mé
define(f00,0000)

foo

0000
To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying
information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc (TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current
function.

(gdb) n

882 set_quotes((argc >= 2) 7 TOKEN_DATA_TEXT(argv[1])\

: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s
(step) instead of next. step goes to the next line to be executed in any subroutine, so it
steps into set_quotes.

(gdb) s

set_quotes (19q=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is
called a stack frame display. It shows a summary of the stack. We can use the backtrace
command (which can also be spelled bt), to see where we are in the stack as a whole: the
backtrace command displays a stack frame for each active subroutine.
(gdb) bt
#0 set_quotes (1g=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two times, we can use ‘s’;
the next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s

0x3b5c 532 if (rquote != def_rquote)

(gdb) s

0x3b80 535 lquote = (1q == nil || *1q == ’\0’) 7 \

def_lquote : xstrdup(lq);

(gdb) n

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup(zrq);

(gdb) n

Chapter 1: A Sample GDB Session 9

538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables 1quote and rquote
to see if they are in fact the new left and right quotes we specified. We use the command
p (print) to see their values.

(gdb) p lquote

$1 = 0x35d40 "<QUOTE>"

(gdb) p rquote

$2 = 0x35d50 "<UNQUOTE>"
lquote and rquote are indeed the new left and right quotes. To look at some context, we
can display ten lines of source surrounding the current line with the 1 (1ist) command.

(gdb) 1

533 xfree(rquote) ;

534

535 lquote = (1q == nil || *1q == ’\0’) 7 def_lquote\
¢ xstrdup (1q);

536 rquote = (rq == nil || *rq == ’\0’) 7 def_rquote\
: xstrdup (rq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the
values of those variables.

(gdb) n

539 len_rquote = strlen(lquote);

(gdb) n

540 }

(gdb) p len_lquote

$3 =09

(gdb) p len_rquote

$4 =7
That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the
lengths of 1quote and rquote respectively. We can set them to better values using the p
command, since it can print the value of any expression—and that expression can include
subroutine calls and assignments.

(gdb) p len_lquote=strlen(lquote)

$5 =7
(gdb) p len_rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the m4 built-in defn? We can
allow m4 to continue executing with the ¢ (continue) command, and then try the example
that caused trouble initially:

(gdb) ¢
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

10 Debugging with GDB

Success! The new quotes now work just as well as the default ones. The problem seems to
have been just the two typos defining the wrong lengths. We allow m4 exit by giving it an
EOF as input:

Ctrl-d

Program exited normally.
The message ‘Program exited normally.’ is from GDB; it indicates m4 has finished execut-
ing. We can end our GDB session with the GDB quit command.

(gdb) quit

11

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:
e type ‘gdb’ to start GDB.
e type quit or Ctrl-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the
terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described here are designed to cover a variety of situations;
in some environments, some of these options may effectively be unavailable.

The most usual way to start GDB is with one argument, specifying an executable program:

gdb program
You can also start with both an executable program and a core file specified:
gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process:

gdb program 1234
would attach GDB to process 1234 (unless you also have a file named 1234; GDB does check
for a core file first).

Taking advantage of the second command-line argument requires a fairly complete op-
erating system; when you use GDB as a remote debugger attached to a bare board, there
may not be any notion of “process”, and there is often no way to get a core dump. GDB
will warn you if it is unable to attach or to read core dumps.

You can optionally have gdb pass any arguments after the executable file to the inferior
using --args. This option stops option processing.

gdb --args gcc -02 -c foo.c

This will cause gdb to debug gcc, and to set gcc’s command-line arguments (see
Section 4.3 [Arguments], page 30) to ‘-02 -c foo.c’.

You can run gdb without printing the front material, which describes GDB’s
non-warranty, by specifying --silent (or -q/--quiet):

gdb --silent
You can further control how GDB starts up by using command-line options. GDB itself can
remind you of the options available.
Type

gdb -help
to display all available options and briefly describe their use (‘gdb -h’ is a shorter equiva-
lent).

All options and command line arguments you give are processed in sequential order. The
order makes a difference when the ‘-x’ option is used.

12 Debugging with GDB

2.1.1 Choosing Files

When GDB starts, it reads any arguments other than options as specifying an executable
file and core file (or process ID). This is the same as if the arguments were specified by the
‘~se’ and ‘-c’ (or ‘-p’) options respectively. (GDB reads the first argument that does not
have an associated option flag as equivalent to the ‘-se’ option followed by that argument;
and the second argument that does not have an associated option flag, if any, as equivalent
to the ‘=c’/‘-p’ option followed by that argument.) If the second argument begins with a
decimal digit, GDB will first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile. If you have a corefile whose name begins with a digit, you can
prevent GDB from treating it as a pid by prefixing it with ./, e.g. ./12345.

If GDB has not been configured to included core file support, such as for most embedded
targets, then it will complain about a second argument and ignore it.

Many options have both long and short forms; both are shown in the following list. GDB
also recognizes the long forms if you truncate them, so long as enough of the option is
present to be unambiguous. (If you prefer, you can flag option arguments with ‘--’ rather
than ‘=’ though we illustrate the more usual convention.)

—symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

-se file Read symbol table from file file and use it as the executable file.

-core file
-c file Use file file as a core dump to examine.

-pid number
-p number Connect to process ID number, as with the attach command.

—-command file
-x file Execute commands from file file. The contents of this file is evaluated exactly
as the source command would. See Section 23.1.3 [Command files|, page 338.

-eval-command command
-ex command
Execute a single GDB command.

This option may be used multiple times to call multiple commands. It may also
be interleaved with ‘~command’ as required.
gdb -ex ’target sim’ -ex ’load’ \
-x setbreakpoints -ex ’run’ a.out
-init-command file
-ix file Execute commands from file file before loading the inferior (but after loading
gdbinit files). See Section 2.1.3 [Startup]|, page 16.

-init-eval-command command

—-iex command
Execute a single GDB command before loading the inferior (but after loading
gdbinit files). See Section 2.1.3 [Startup|, page 16.

Chapter 2: Getting In and Out of GDB 13

—-directory directory
-d directory

Add directory to the path to search for source and script files.

-r

-readnow Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower,
but makes future operations faster.

--readnever

Do not read each symbol file’s symbolic debug information. This makes startup
faster but at the expense of not being able to perform symbolic debugging.
DWARF unwind information is also not read, meaning backtraces may become
incomplete or inaccurate. One use of this is when a user simply wants to do
the following sequence: attach, dump core, detach. Loading the debugging
information in this case is an unnecessary cause of delay.

2.1.2 Choosing Modes

You can run GDB in various alternative modes—for example, in batch mode or quiet mode.

-nx
-n

-nh

-quiet
-silent
-q

Do not execute commands found in any initialization file. There are three init
files, loaded in the following order:

system.gdbinit
This is the system-wide init file. Its location is specified with
the --with-system-gdbinit configure option (see Section C.6
[System-wide configuration]|, page 598). It is loaded first when
GDB starts, before command line options have been processed.

~/.gdbinit
This is the init file in your home directory. It is loaded next, af-
ter system.gdbinit, and before command options have been pro-
cessed.

./.gdbinit
This is the init file in the current directory. It is loaded last, af-
ter command line options other than -x and -ex have been pro-
cessed. Command line options -x and -ex are processed last, after
./ .gdbinit has been loaded.

For further documentation on startup processing, See Section 2.1.3 [Startup],
page 16. For documentation on how to write command files, See Section 23.1.3
[Command Files], page 338.

Do not execute commands found in “/.gdbinit, the init file in your home
directory. See Section 2.1.3 [Startup], page 16.

“Quiet”. Do not print the introductory and copyright messages. These mes-
sages are also suppressed in batch mode.

14

-batch

Debugging with GDB

Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x’ (and all commands from initialization files, if not inhibited
with ‘-n’). Exit with nonzero status if an error occurs in executing the GDB
commands in the command files. Batch mode also disables pagination, sets un-
limited terminal width and height see Section 22.4 [Screen Size|, page 319, and
acts as if set confirm off were in effect (see Section 22.8 [Messages/Warnings],
page 327).

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control
terminates) is not issued when running in batch mode.

-batch-silent

Run in batch mode exactly like ‘-batch’, but totally silently. All GDB output to
stdout is prevented (stderr is unaffected). This is much quieter than ‘-silent’
and would be useless for an interactive session.

This is particularly useful when using targets that give ‘Loading section’ mes-
sages, for example.

Note that targets that give their output via GDB, as opposed to writing directly
to stdout, will also be made silent.

-return-child-result

-nowindows

—nw

-windows

W

The return code from GDB will be the return code from the child process (the
process being debugged), with the following exceptions:

e GDB exits abnormally. E.g., due to an incorrect argument or an internal
error. In this case the exit code is the same as it would have been without
‘-return-child-result’.

e The user quits with an explicit value. E.g., ‘quit 1’.
e The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.

This option is useful in conjunction with ‘-batch’ or ‘-batch-silent’, when
GDB is being used as a remote program loader or simulator interface.

“No windows”. If GDB comes with a graphical user interface (GUI) built in,
then this option tells GDB to only use the command-line interface. If no GUI is
available, this option has no effect.

If aDB includes a GUI, then this option requires it to be used if possible.

-cd directory

Run GDB using directory as its working directory, instead of the current direc-
tory.

Chapter 2: Getting In and Out of GDB 15

—-data-directory directory

-D directory
Run GDB using directory as its data directory. The data directory is where GDB
searches for its auxiliary files. See Section 18.7 [Data Files|, page 267.

-fullname

-f GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion
each time a stack frame is displayed (which includes each time your program
stops). This recognizable format looks like two ‘\032’ characters, followed by
the file name, line number and character position separated by colons, and a
newline. The Emacs-to-GDB interface program uses the two ‘\032’ characters
as a signal to display the source code for the frame.

—annotate level

This option sets the annotation level inside GDB. Its effect is identical to using
‘set annotate level’ (see Chapter 28 [Annotations|, page 573). The annota-
tion level controls how much information GDB prints together with its prompt,
values of expressions, source lines, and other types of output. Level 0 is the
normal, level 1 is for use when GDB is run as a subprocess of GNU Emacs, level
3 is the maximum annotation suitable for programs that control GDB, and level
2 has been deprecated.

The annotation mechanism has largely been superseded by GDB/MI (see
Chapter 27 [GDB/MI], page 485).

--args Change interpretation of command line so that arguments following the exe-
cutable file are passed as command line arguments to the inferior. This option
stops option processing.

-baud bps
-b bps Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

-1 timeout
Set the timeout (in seconds) of any communication used by GDB for remote
debugging.

-tty device

-t device Run using device for your program’s standard input and output.

-P

—--python Change interpretation of command line so that the argument immediately fol-
lowing this switch is taken to be the name of a Python script file. This option
stops option processing; subsequent options are passed to Python as sys.argv.
This option is only available if Python scripting support was enabled when GDB
was configured.

-tui Activate the Text User Interface when starting. The Text User Interface man-
ages several text windows on the terminal, showing source, assembly, regis-
ters and GDB command outputs (see Chapter 25 [GDB Text User Interface],
page 477). Do not use this option if you run GDB from Emacs (see Chapter 26
[Using GDB under GNU Emacs]|, page 483).

16 Debugging with GDB

—interpreter interp
Use the interpreter interp for interface with the controlling program or device.
This option is meant to be set by programs which communicate with GDB using
it as a back end. See Chapter 24 [Command Interpreters|, page 475.

‘~-interpreter=mi’ (or ‘--interpreter=mi2’) causes GDB to use the GDB/MI
interface (see Chapter 27 [The GDB/MI Interface], page 485) included since GDB
version 6.0. The previous GDB/MI interface, included in GDB version 5.3 and
selected with ‘--interpreter=mil’, is deprecated. Earlier GDB/MI interfaces
are no longer supported.

-write Open the executable and core files for both reading and writing. This is equiv-
alent to the ‘set write on’ command inside GDB (see Section 17.6 [Patching],
page 244).

-statistics

This option causes GDB to print statistics about time and memory usage after
it completes each command and returns to the prompt.

-version This option causes GDB to print its version number and no-warranty blurb, and
exit.

-configuration
This option causes GDB to print details about its build-time configuration pa-
rameters, and then exit. These details can be important when reporting GDB
bugs (see Chapter 31 [GDB Bugs|, page 585).

2.1.3 What ¢DB Does During Startup

Here’s the description of what GDB does during session startup:

1. Sets up the command interpreter as specified by the command line (see Section 2.1.2
[Mode Options], page 13).

2. Reads the system-wide init file (if -~—~with-system-gdbinit was used when building
GDB; see Section C.6 [System-wide configuration and settings|, page 598) and executes
all the commands in that file.

3. Reads the init file (if any) in your home directory! and executes all the commands in
that file.

4. Executes commands and command files specified by the ‘-iex’ and ‘-ix’ options in
their specified order. Usually you should use the ‘-ex’ and ‘-x’ options instead, but
this way you can apply settings before GDB init files get executed and before inferior
gets loaded.

¢

5. Processes command line options and operands.

6. Reads and executes the commands from init file (if any) in the current working directory
as long as ‘set auto-load local-gdbinit’ is set to ‘on’ (see Section 22.7.1 [Init File in
the Current Directory], page 324). This is only done if the current directory is different
from your home directory. Thus, you can have more than one init file, one generic in
your home directory, and another, specific to the program you are debugging, in the
directory where you invoke GDB.

1 Oon DOS /Windows systems, the home directory is the one pointed to by the HOME environment variable.

Chapter 2: Getting In and Out of GDB 17

7. If the command line specified a program to debug, or a process to attach to, or a core
file, GDB loads any auto-loaded scripts provided for the program or for its loaded shared
libraries. See Section 22.7 [Auto-loading], page 322.

If you wish to disable the auto-loading during startup, you must do something like the
following:
$ gdb -iex "set auto-load python-scripts off" myprogram

Option ‘-ex’ does not work because the auto-loading is then turned off too late.

8. Executes commands and command files specified by the ‘-ex’ and ‘-x’ options in their
specified order. See Section 23.1.3 [Command Files|, page 338, for more details about
GDB command files.

9. Reads the command history recorded in the history file. See Section 22.3 [Command
History], page 318, for more details about the command history and the files where
GDB records it.

Init files use the same syntax as command files (see Section 23.1.3 [Command Files],
page 338) and are processed by GDB in the same way. The init file in your home directory
can set options (such as ‘set complaints’) that affect subsequent processing of command
line options and operands. Init files are not executed if you use the ‘-nx’ option (see
Section 2.1.2 [Choosing Modes]|, page 13).

To display the list of init files loaded by gdb at startup, you can use gdb --help.

The GDB init files are normally called .gdbinit. The DJGPP port of GDB uses the name
gdb.ini, due to the limitations of file names imposed by DOS filesystems. The Windows
port of GDB uses the standard name, but if it finds a gdb.ini file in your home directory,
it warns you about that and suggests to rename the file to the standard name.

2.2 Quitting GDB

quit [expression]

q To exit GDB, use the quit command (abbreviated q), or type an end-of-file
character (usually Ctrl-d). If you do not supply expression, GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often Ctrl-c) does not exit from GDB, but rather terminates the action
of any GDB command that is in progress and returns to GDB command level. It is safe to
type the interrupt character at any time because GDB does not allow it to take effect until
a time when it is safe.

If you have been using GDB to control an attached process or device, you can release
it with the detach command (see Section 4.7 [Debugging an Already-running Process],
page 33).

2.3 Shell Commands

If you need to execute occasional shell commands during your debugging session, there is
no need to leave or suspend GDB; you can just use the shell command.

18 Debugging with GDB

shell command-string

| command-string
Invoke a standard shell to execute command-string. Note that no space is
needed between ! and command-string. If it exists, the environment variable
SHELL determines which shell to run. Otherwise GDB uses the default shell
(/bin/sh on Unix systems, COMMAND.COM on MS-DOS, etc.).

The utility make is often needed in development environments. You do not have to use
the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments. This is equivalent to
‘shell make make-args’.

2.4 Logging Output

You may want to save the output of GDB commands to a file. There are several commands
to control GDB’s logging.

set logging on
Enable logging.

set logging off
Disable logging.

set logging file file
Change the name of the current logfile. The default logfile is gdb.txt.

set logging overwrite [on|off]
By default, GbDB will append to the logfile. Set overwrite if you want set
logging on to overwrite the logfile instead.

set logging redirect [on|off]
By default, GDB output will go to both the terminal and the logfile. Set
redirect if you want output to go only to the log file.

show logging
Show the current values of the logging settings.

19

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if that
abbreviation is unambiguous; and you can repeat certain GDB commands by typing just
RET. You can also use the TAB key to get GDB to fill out the rest of a word in a command
(or to show you the alternatives available, if there is more than one possibility).

3.1 Command Syntax

A GDB command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning depends on
the command name. For example, the command step accepts an argument which is the
number of times to step, as in ‘step 5. You can also use the step command with no
arguments. Some commands do not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual com-
mands. In some cases, even ambiguous abbreviations are allowed; for example, s is specially
defined as equivalent to step even though there are other commands whose names start
with s. You can test abbreviations by using them as arguments to the help command.

A blank line as input to GDB (typing just RET) means to repeat the previous command.
Certain commands (for example, run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are unlikely to want to repeat.
User-defined commands can disable this feature; see Section 23.1.1 [Define|, page 335.

The list and x commands, when you repeat them with RET, construct new arguments
rather than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in a way similar to
the common utility more (see Section 22.4 [Screen Size|, page 319). Since it is easy to press
one RET too many in this situation, GDB disables command repetition after any command
that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see Section 23.1.3 [Command Files], page 338).

The Ctrl-o binding is useful for repeating a complex sequence of commands. This
command accepts the current line, like RET, and then fetches the next line relative to the
current line from the history for editing.

3.2 Command Completion

GDB can fill in the rest of a word in a command for you, if there is only one possibility;
it can also show you what the valid possibilities are for the next word in a command, at
any time. This works for GDB commands, GDB subcommands, and the names of symbols
in your program.

Press the TAB key whenever you want GDB to fill out the rest of a word. If there is only
one possibility, GDB fills in the word, and waits for you to finish the command (or press RET
to enter it). For example, if you type

(gdb) info bre TAB

20 Debugging with GDB

GDB fills in the rest of the word ‘breakpoints’, since that is the only info subcommand
beginning with ‘bre’:
(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints command, or backspace
and enter something else, if ‘breakpoints’ does not look like the command you expected. (If
you were sure you wanted info breakpoints in the first place, you might as well just type
RET immediately after ‘info bre’, to exploit command abbreviations rather than command
completion).

If there is more than one possibility for the next word when you press TAB, GDB sounds a
bell. You can either supply more characters and try again, or just press TAB a second time;
GDB displays all the possible completions for that word. For example, you might want to
set a breakpoint on a subroutine whose name begins with ‘make_’, but when you type b
make_TAB GDB just sounds the bell. Typing TAB again displays all the function names in
your program that begin with those characters, for example:

(gdb) b make_ TAB
GDB sounds bell; press TAB again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list

(gdb) b make_
After displaying the available possibilities, GDB copies your partial input (‘b make_’ in the
example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you can press M-? rather
than pressing TAB twice. M-? means META 7. You can type this either by holding down a
key designated as the META shift on your keyboard (if there is one) while typing ?, or as ESC
followed by 7.

If the number of possible completions is large, GDB will print as much of the list as it
has collected, as well as a message indicating that the list may be truncated.
(gdb) b mTABTAB

main

<... the rest of the possible completions ...>

*** List may be truncated, max-completions reached. **x*
(gdb) b m

This behavior can be controlled with the following commands:

set max-completions limit

set max-completions unlimited
Set the maximum number of completion candidates. GDB will stop looking for
more completions once it collects this many candidates. This is useful when
completing on things like function names as collecting all the possible candidates
can be time consuming. The default value is 200. A value of zero disables tab-
completion. Note that setting either no limit or a very large limit can make
completion slow.

show max—-completions
Show the maximum number of candidates that GDB will collect and show during
completion.

Chapter 3: abB Commands 21

Sometimes the string you need, while logically a “word”, may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To permit word
completion to work in this situation, you may enclose words in ’ (single quote marks) in
GDB commands.

A likely situation where you might need this is in typing an expression that involves a
C++ symbol name with template parameters. This is because when completing expressions,
GDB treats the ‘<’ character as word delimiter, assuming that it’s the less-than comparison
operator (see Section 15.4.1.1 [C and C++ Operators], page 199).

For example, when you want to call a C++ template function interactively using the
print or call commands, you may need to distinguish whether you mean the version
of name that was specialized for int, name<int>(), or the version that was specialized for
float, name<float>(). To use the word-completion facilities in this situation, type a single
quote ’ at the beginning of the function name. This alerts GDB that it may need to consider
more information than usual when you press TAB or M-? to request word completion:

(gdb) p ’func< M-?
func<int>() func<float>()
(gdb) p ’func<

When setting breakpoints however (see Section 9.2 [Specify Location], page 106), you
don’t usually need to type a quote before the function name, because GDB understands that
you want to set a breakpoint on a function:

(gdb) b func< M-?

func<int>() func<float>()
(gdb) b func<

This is true even in the case of typing the name of C++ overloaded functions (multiple
definitions of the same function, distinguished by argument type). For example, when you
want to set a breakpoint you don’t need to distinguish whether you mean the version of
name that takes an int parameter, name (int), or the version that takes a float parameter,
name (float).

(gdb) b bubble(M-?
bubble (int) bubble (double)

(gdb) b bubble(dou M-7
bubble (double)

See [quoting names|, page 227, for a description of other scenarios that require quoting.

For more information about overloaded functions, see Section 15.4.1.3 [C++ Expressions],
page 202. You can use the command set overload-resolution off to disable overload
resolution; see Section 15.4.1.7 [GDB Features for C++], page 203.

When completing in an expression which looks up a field in a structure, GDB also tries!
to limit completions to the field names available in the type of the left-hand-side:

(gdb) p gdb_stdout.M-?

magic to_fputs to_rewind

to_data to_isatty to_write

to_delete to_put to_write_async_safe
to_flush to_read

! The completer can be confused by certain kinds of invalid expressions. Also, it only examines the static
type of the expression, not the dynamic type.

22

Debugging with GDB

This is because the gdb_stdout is a variable of the type struct ui_file that is defined in
GDB sources as follows:

struct ui_file

{

int *magic;

ui_file_flush_ftype *to_flush;
ui_file_write_ftype *to_write;
ui_file_write_async_safe_ftype *to_write_async_safe;
ui_file_fputs_ftype *to_fputs;
ui_file_read_ftype *to_read;
ui_file_delete_ftype *to_delete;
ui_file_isatty_ftype *to_isatty;
ui_file_rewind_ftype *to_rewind;
ui_file_put_ftype *to_put;

void *to_data;

3.3 Getting Help

You can always ask GDB itself for information on its commands, using the command help.

help
h

help class

You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without
stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
(gdb)

Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, here is the help display for
the class status:

(gdb) help status
Status inquiries.

List of commands:

Chapter 3: GbB Commands 23

help command

info -- Generic command for showing things
about the program being debugged
show -- Generic command for showing things

about the debugger

Type "help" followed by command name for full
documentation.

Command name abbreviations are allowed if unambiguous.
(gdb)

With a command name as help argument, GDB displays a short paragraph on
how to use that command.

apropos args

The apropos command searches through all of the GDB commands, and their
documentation, for the regular expression specified in args. It prints out all
matches found. For example:

apropos alias

results in:
alias -- Define a new command that is an alias of an existing command
aliases -- Aliases of other commands
d -- Delete some breakpoints or auto-display expressions
del -- Delete some breakpoints or auto-display expressions
delete -- Delete some breakpoints or auto-display expressions

complete args

The complete args command lists all the possible completions for the begin-
ning of a command. Use args to specify the beginning of the command you
want completed. For example:

complete i

results in:

if
ignore
info
inspect

This is intended for use by GNU Emacs.

In addition to help, you can use the GDB commands info and show to inquire about
the state of your program, or the state of GDB itself. Each command supports many topics
of inquiry; this manual introduces each of them in the appropriate context. The listings
under info and under show in the Command, Variable, and Function Index point to all the
sub-commands. See [Command and Variable Index], page 759.

info This command (abbreviated i) is for describing the state of your program. For
example, you can show the arguments passed to a function with info args,
list the registers currently in use with info registers, or list the breakpoints
you have set with info breakpoints. You can get a complete list of the info
sub-commands with help info.

set You can assign the result of an expression to an environment variable with set.
For example, you can set the GDB prompt to a $-sign with set prompt $.

24

show

Debugging with GDB

In contrast to info, show is for describing the state of GDB itself. You can
change most of the things you can show, by using the related command set;
for example, you can control what number system is used for displays with set
radix, or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values, you can use
show with no arguments; you may also use info set. Both commands produce
the same display.

Here are several miscellaneous show subcommands, all of which are exceptional in lacking
corresponding set commands:

show version

Show what version of GDB is running. You should include this information in
GDB bug-reports. If multiple versions of GDB are in use at your site, you may
need to determine which version of GDB you are running; as GDB evolves, new
commands are introduced, and old ones may wither away. Also, many system
vendors ship variant versions of GDB, and there are variant versions of GDB in
GNU/Linux distributions as well. The version number is the same as the one
announced when you start GDB.

show copying
info copying

Display information about permission for copying GDB.

show warranty
info warranty

Display the GNU “NO WARRANTY” statement, or a warranty, if your version
of GDB comes with one.

show configuration

Display detailed information about the way GDB was configured when it was
built. This displays the optional arguments passed to the configure script
and also configuration parameters detected automatically by configure. When
reporting a GDB bug (see Chapter 31 [GDB Bugs], page 585), it is important
to include this information in your report.

25

4 Running Programs Under GDB

When you run a program under GDB, you must first generate debugging information when
you compile it.

You may start GDB with its arguments, if any, in an environment of your choice. If you
are doing native debugging, you may redirect your program’s input and output, debug an
already running process, or Kkill a child process.

4.1 Compiling for Debugging

In order to debug a program effectively, you need to generate debugging information when
you compile it. This debugging information is stored in the object file; it describes the data
type of each variable or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you run the compiler.

Programs that are to be shipped to your customers are compiled with optimizations,
using the ‘-0’ compiler option. However, some compilers are unable to handle the ‘-g’ and
‘-0’ options together. Using those compilers, you cannot generate optimized executables
containing debugging information.

Gcce, the GNU C/C++ compiler, supports ‘-g’ with or without ‘-0’, making it possible
to debug optimized code. We recommend that you always use ‘-g’ whenever you compile
a program. You may think your program is correct, but there is no sense in pushing your
luck. For more information, see Chapter 11 [Optimized Code], page 163.

Older versions of the GNU C compiler permitted a variant option ‘-gg’ for debugging
information. GDB no longer supports this format; if your GNU C compiler has this option,
do not use it.

GDB knows about preprocessor macros and can show you their expansion (see Chapter 12
[Macros|, page 167). Most compilers do not include information about preprocessor macros
in the debugging information if you specify the -g flag alone. Version 3.1 and later of Gcc,
the aNU C compiler, provides macro information if you are using the DWARF debugging
format, and specify the option -g3.

See Section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on GCC options affecting debug information.

You will have the best debugging experience if you use the latest version of the DWARF
debugging format that your compiler supports. DWARF is currently the most expressive
and best supported debugging format in GDB.

26 Debugging with GDB

4.2 Starting your Program

run

r Use the run command to start your program under GDB. You must first specify
the program name with an argument to GDB (see Chapter 2 [Getting In and
Out of GDBJ, page 11), or by using the file or exec-file command (see
Section 18.1 [Commands to Specify Files|, page 251).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. In some envi-
ronments without processes, run jumps to the start of your program. Other targets, like
‘remote’, are always running. If you get an error message like this one:

The "remote" target does not support "run".
Try "help target" or "continue".

then use continue to run your program. You may need load first (see [load], page 271).

The execution of a program is affected by certain information it receives from its superior.
GDB provides ways to specify this information, which you must do before starting your
program. (You can change it after starting your program, but such changes only affect your
program the next time you start it.) This information may be divided into four categories:

The arguments.

Specify the arguments to give your program as the arguments of the run com-
mand. If a shell is available on your target, the shell is used to pass the argu-
ments, so that you may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix systems, you can
control which shell is used with the SHELL environment variable. If you do not
define SHELL, GDB uses the default shell (/bin/sh). You can disable use of any
shell with the set startup-with-shell command (see below for details).

The environment.
Your program normally inherits its environment from GDB, but you can use
the GDB commands set environment and unset environment to change parts
of the environment that affect your program. See Section 4.4 [Your Program’s
Environment|, page 30.

The working directory.
You can set your program’s working directory with the command set cwd. If
you do not set any working directory with this command, your program will
inherit GDB’s working directory if native debugging, or the remote server’s work-
ing directory if remote debugging. See Section 4.5 [Your Program’s Working
Directory], page 31.

The standard input and output.
Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run command
line, or you can use the tty command to set a different device for your program.
See Section 4.6 [Your Program’s Input and Output], page 32.

Chapter 4: Running Programs Under GDB 27

Warning: While input and output redirection work, you cannot use pipes to
pass the output of the program you are debugging to another program; if you
attempt this, GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See
Chapter 5 [Stopping and Continuing], page 47, for discussion of how to arrange for your
program to stop. Once your program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 10 [Examining Data], page 119.

If the modification time of your symbol file has changed since the last time GDB read its
symbols, GDB discards its symbol table, and reads it again. When it does this, GDB tries to
retain your current breakpoints.

start

starti

The name of the main procedure can vary from language to language. With
C or C++, the main procedure name is always main, but other languages such
as Ada do not require a specific name for their main procedure. The debugger
provides a convenient way to start the execution of the program and to stop at
the beginning of the main procedure, depending on the language used.

The ‘start’ command does the equivalent of setting a temporary breakpoint
at the beginning of the main procedure and then invoking the ‘run’ command.

Some programs contain an elaboration phase where some startup code is exe-
cuted before the main procedure is called. This depends on the languages used
to write your program. In C++, for instance, constructors for static and global
objects are executed before main is called. It is therefore possible that the
debugger stops before reaching the main procedure. However, the temporary
breakpoint will remain to halt execution.

Specify the arguments to give to your program as arguments to the ‘start’
command. These arguments will be given verbatim to the underlying ‘run’
command. Note that the same arguments will be reused if no argument is
provided during subsequent calls to ‘start’ or ‘run’.

It is sometimes necessary to debug the program during elaboration. In these
cases, using the start command would stop the execution of your program
too late, as the program would have already completed the elaboration phase.
Under these circumstances, either insert breakpoints in your elaboration code
before running your program or use the starti command.

The ‘starti’ command does the equivalent of setting a temporary breakpoint
at the first instruction of a program’s execution and then invoking the ‘run’
command. For programs containing an elaboration phase, the starti command
will stop execution at the start of the elaboration phase.

set exec—-wrapper wrapper
show exec-wrapper
unset exec-wrapper

When ‘exec-wrapper’ is set, the specified wrapper is used to launch programs
for debugging. GDB starts your program with a shell command of the form exec
wrapper program. Quoting is added to program and its arguments, but not to
wrapper, so you should add quotes if appropriate for your shell. The wrapper
runs until it executes your program, and then GDB takes control.

28

Debugging with GDB

You can use any program that eventually calls execve with its arguments as
a wrapper. Several standard Unix utilities do this, e.g. env and nohup. Any
Unix shell script ending with exec "$@" will also work.

For example, you can use env to pass an environment variable to the debugged
program, without setting the variable in your shell’s environment:

(gdb) set exec-wrapper env ’LD_PRELOAD=libtest.so’

(gdb) run
This command is available when debugging locally on most targets, excluding
DJGPP, Cygwin, MS Windows, and QNX Neutrino.

set startup-with-shell
set startup-with-shell on
set startup-with-shell off
show startup-with-shell

On Unix systems, by default, if a shell is available on your target, GDB) uses it
to start your program. Arguments of the run command are passed to the shell,
which does varia