44 void SpatialTransform(
const btMatrix3x3 &rotation_matrix,
51 top_out = rotation_matrix * top_in;
52 bottom_out = -displacement.
cross(top_out) + rotation_matrix * bottom_in;
56 void InverseSpatialTransform(
const btMatrix3x3 &rotation_matrix,
63 top_out = rotation_matrix.
transpose() * top_in;
64 bottom_out = rotation_matrix.
transpose() * (bottom_in + displacement.
cross(top_in));
72 return a_bottom.
dot(b_top) + a_top.
dot(b_bottom);
75 void SpatialCrossProduct(
const btVector3 &a_top,
82 top_out = a_top.
cross(b_top);
83 bottom_out = a_bottom.
cross(b_top) + a_top.
cross(b_bottom);
104 m_baseQuat(0, 0, 0, 1),
106 m_baseInertia(inertia),
108 m_fixedBase(fixedBase),
110 m_canSleep(canSleep),
112 m_userObjectPointer(0),
115 m_linearDamping(0.04f),
116 m_angularDamping(0.04f),
118 m_maxAppliedImpulse(1000.f),
119 m_maxCoordinateVelocity(100.f),
120 m_hasSelfCollision(true),
125 m_useGlobalVelocities(false),
126 m_internalNeedsJointFeedback(false)
150 const btVector3 &parentComToThisPivotOffset,
151 const btVector3 &thisPivotToThisComOffset,
bool )
155 m_links[i].m_inertiaLocal = inertia;
157 m_links[i].setAxisTop(0, 0., 0., 0.);
159 m_links[i].m_zeroRotParentToThis = rotParentToThis;
160 m_links[i].m_dVector = thisPivotToThisComOffset;
161 m_links[i].m_eVector = parentComToThisPivotOffset;
169 m_links[i].updateCacheMultiDof();
182 const btVector3 &parentComToThisPivotOffset,
183 const btVector3 &thisPivotToThisComOffset,
184 bool disableParentCollision)
190 m_links[i].m_inertiaLocal = inertia;
192 m_links[i].m_zeroRotParentToThis = rotParentToThis;
193 m_links[i].setAxisTop(0, 0., 0., 0.);
194 m_links[i].setAxisBottom(0, jointAxis);
195 m_links[i].m_eVector = parentComToThisPivotOffset;
196 m_links[i].m_dVector = thisPivotToThisComOffset;
197 m_links[i].m_cachedRotParentToThis = rotParentToThis;
202 m_links[i].m_jointPos[0] = 0.f;
203 m_links[i].m_jointTorque[0] = 0.f;
205 if (disableParentCollision)
209 m_links[i].updateCacheMultiDof();
220 const btVector3 &parentComToThisPivotOffset,
221 const btVector3 &thisPivotToThisComOffset,
222 bool disableParentCollision)
228 m_links[i].m_inertiaLocal = inertia;
230 m_links[i].m_zeroRotParentToThis = rotParentToThis;
231 m_links[i].setAxisTop(0, jointAxis);
232 m_links[i].setAxisBottom(0, jointAxis.
cross(thisPivotToThisComOffset));
233 m_links[i].m_dVector = thisPivotToThisComOffset;
234 m_links[i].m_eVector = parentComToThisPivotOffset;
239 m_links[i].m_jointPos[0] = 0.f;
240 m_links[i].m_jointTorque[0] = 0.f;
242 if (disableParentCollision)
245 m_links[i].updateCacheMultiDof();
257 const btVector3 &parentComToThisPivotOffset,
258 const btVector3 &thisPivotToThisComOffset,
259 bool disableParentCollision)
266 m_links[i].m_inertiaLocal = inertia;
268 m_links[i].m_zeroRotParentToThis = rotParentToThis;
269 m_links[i].m_dVector = thisPivotToThisComOffset;
270 m_links[i].m_eVector = parentComToThisPivotOffset;
275 m_links[i].setAxisTop(0, 1.f, 0.f, 0.f);
276 m_links[i].setAxisTop(1, 0.f, 1.f, 0.f);
277 m_links[i].setAxisTop(2, 0.f, 0.f, 1.f);
278 m_links[i].setAxisBottom(0,
m_links[i].getAxisTop(0).cross(thisPivotToThisComOffset));
279 m_links[i].setAxisBottom(1,
m_links[i].getAxisTop(1).cross(thisPivotToThisComOffset));
280 m_links[i].setAxisBottom(2,
m_links[i].getAxisTop(2).cross(thisPivotToThisComOffset));
285 if (disableParentCollision)
288 m_links[i].updateCacheMultiDof();
299 const btVector3 &parentComToThisComOffset,
300 bool disableParentCollision)
307 m_links[i].m_inertiaLocal = inertia;
309 m_links[i].m_zeroRotParentToThis = rotParentToThis;
310 m_links[i].m_dVector.setZero();
311 m_links[i].m_eVector = parentComToThisComOffset;
314 btVector3 vecNonParallelToRotAxis(1, 0, 0);
315 if(rotationAxis.
normalized().
dot(vecNonParallelToRotAxis) > 0.999)
316 vecNonParallelToRotAxis.
setValue(0, 1, 0);
323 m_links[i].setAxisTop(0, n[0],n[1],n[2]);
324 m_links[i].setAxisTop(1,0,0,0);
325 m_links[i].setAxisTop(2,0,0,0);
326 m_links[i].setAxisBottom(0,0,0,0);
328 m_links[i].setAxisBottom(1,cr[0],cr[1],cr[2]);
330 m_links[i].setAxisBottom(2,cr[0],cr[1],cr[2]);
334 if (disableParentCollision)
337 m_links[i].updateCacheMultiDof();
364 return m_links[i].m_inertiaLocal;
369 return m_links[i].m_jointPos[0];
379 return &
m_links[i].m_jointPos[0];
389 return &
m_links[i].m_jointPos[0];
401 m_links[i].updateCacheMultiDof();
406 for(
int pos = 0; pos <
m_links[i].m_posVarCount; ++pos)
407 m_links[i].m_jointPos[pos] = q[pos];
409 m_links[i].updateCacheMultiDof();
419 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
425 return m_links[i].m_cachedRVector;
430 return m_links[i].m_cachedRotParentToThis;
516 result.
setValue(frameInWorld0[0], frameInWorld1[0], frameInWorld2[0], frameInWorld0[1], frameInWorld1[1], frameInWorld2[1], frameInWorld0[2], frameInWorld1[2], frameInWorld2[2]);
527 for (
int i = 0; i < num_links; ++i)
529 const int parent =
m_links[i].m_parent;
533 omega[parent+1], vel[parent+1],
534 omega[i+1], vel[i+1]);
546 omega[i+1] += jointVel * axisTop;
547 vel[i+1] += jointVel * axisBottom;
569 for (
int i = 0; i < num_links; ++i) {
570 result +=
m_links[i].m_mass * vel[i+1].dot(vel[i+1]);
571 result += omega[i+1].dot(
m_links[i].m_inertiaLocal * omega[i+1]);
574 return 0.5f * result;
589 for (
int i = 0; i < num_links; ++i) {
590 rot_from_world[i+1] =
m_links[i].m_cachedRotParentToThis * rot_from_world[
m_links[i].m_parent+1];
604 m_links[i].m_appliedConstraintForce.setValue(0, 0, 0);
605 m_links[i].m_appliedConstraintTorque.setValue(0, 0, 0);
615 m_links[i].m_appliedForce.setValue(0, 0, 0);
616 m_links[i].m_appliedTorque.setValue(0, 0, 0);
630 m_links[i].m_appliedForce += f;
635 m_links[i].m_appliedTorque += t;
640 m_links[i].m_appliedConstraintForce += f;
645 m_links[i].m_appliedConstraintTorque += t;
652 m_links[i].m_jointTorque[0] += Q;
657 m_links[i].m_jointTorque[dof] += Q;
662 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
663 m_links[i].m_jointTorque[dof] = Q[dof];
668 return m_links[i].m_appliedForce;
673 return m_links[i].m_appliedTorque;
678 return m_links[i].m_jointTorque[0];
683 return &
m_links[i].m_jointTorque[0];
702 row1[0],row1[1],row1[2],
703 row2[0],row2[1],row2[2]);
707 #define vecMulVecTranspose(v0, v1Transposed) outerProduct(v0, v1Transposed) 714 bool isConstraintPass)
747 scratch_v.
resize(8*num_links + 6);
748 scratch_m.
resize(4*num_links + 4);
756 v_ptr += num_links * 2 + 2;
760 v_ptr += num_links * 2 + 2;
764 v_ptr += num_links * 2;
777 v_ptr += num_links * 2 + 2;
807 spatVel[0].
setVector(rot_from_parent[0] * base_omega, rot_from_parent[0] * base_vel);
818 zeroAccSpatFrc[0].
setVector(-(rot_from_parent[0] * baseTorque), -(rot_from_parent[0] * baseForce));
821 btScalar linDampMult = 1., angDampMult = 1.;
822 zeroAccSpatFrc[0].
addVector(angDampMult *
m_baseInertia * spatVel[0].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[0].getAngular().safeNorm()),
823 linDampMult *
m_baseMass * spatVel[0].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[0].getLinear().safeNorm()));
830 zeroAccSpatFrc[0].
addLinear(
m_baseMass * spatVel[0].getAngular().cross(spatVel[0].getLinear()));
846 rot_from_world[0] = rot_from_parent[0];
849 for (
int i = 0; i < num_links; ++i) {
850 const int parent =
m_links[i].m_parent;
852 rot_from_world[i+1] = rot_from_parent[i+1] * rot_from_world[parent+1];
855 fromWorld.
m_rotMat = rot_from_world[i+1];
856 fromParent.
transform(spatVel[parent+1], spatVel[i+1]);
864 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
868 spatVel[i+1] += spatJointVel;
882 spatVel[i+1].
cross(spatJointVel, spatCoriolisAcc[i]);
887 btVector3 linkAppliedForce = isConstraintPass?
m_links[i].m_appliedConstraintForce :
m_links[i].m_appliedForce;
888 btVector3 linkAppliedTorque =isConstraintPass ?
m_links[i].m_appliedConstraintTorque :
m_links[i].m_appliedTorque;
890 zeroAccSpatFrc[i+1].
setVector(-(rot_from_world[i+1] * linkAppliedTorque), -(rot_from_world[i+1] * linkAppliedForce ));
895 b3Printf(
"stepVelocitiesMultiDof zeroAccSpatFrc[%d] linear:%f,%f,%f, angular:%f,%f,%f",
897 zeroAccSpatFrc[i+1].m_topVec[0],
898 zeroAccSpatFrc[i+1].m_topVec[1],
899 zeroAccSpatFrc[i+1].m_topVec[2],
901 zeroAccSpatFrc[i+1].m_bottomVec[0],
902 zeroAccSpatFrc[i+1].m_bottomVec[1],
903 zeroAccSpatFrc[i+1].m_bottomVec[2]);
908 btScalar linDampMult = 1., angDampMult = 1.;
909 zeroAccSpatFrc[i+1].
addVector(angDampMult *
m_links[i].m_inertiaLocal * spatVel[i+1].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[i+1].getAngular().safeNorm()),
910 linDampMult *
m_links[i].m_mass * spatVel[i+1].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[i+1].getLinear().safeNorm()));
921 0,
m_links[i].m_inertiaLocal[1], 0,
922 0, 0,
m_links[i].m_inertiaLocal[2])
927 zeroAccSpatFrc[i+1].
addAngular(spatVel[i+1].getAngular().cross(
m_links[i].m_inertiaLocal * spatVel[i+1].getAngular()));
929 zeroAccSpatFrc[i+1].
addLinear(
m_links[i].m_mass * spatVel[i+1].getAngular().cross(spatVel[i+1].getLinear()));
950 for (
int i = num_links - 1; i >= 0; --i)
952 const int parent =
m_links[i].m_parent;
955 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
959 hDof = spatInertia[i+1] *
m_links[i].m_axes[dof];
962 -
m_links[i].m_axes[dof].dot(zeroAccSpatFrc[i+1])
963 - spatCoriolisAcc[i].
dot(hDof)
967 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
970 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
973 D_row[dof2] =
m_links[i].m_axes[dof].dot(hDof2);
983 invDi[0] = 1.0f / D[0];
993 for(
int row = 0; row < 3; ++row)
995 for(
int col = 0; col < 3; ++col)
997 invDi[row * 3 + col] = invD3x3[row][col];
1010 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1012 spatForceVecTemps[dof].
setZero();
1014 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
1018 spatForceVecTemps[dof] += hDof2 * invDi[dof2 *
m_links[i].m_dofCount + dof];
1022 dyadTemp = spatInertia[i+1];
1025 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1034 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1036 invD_times_Y[dof] = 0.f;
1038 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
1040 invD_times_Y[dof] += invDi[dof *
m_links[i].m_dofCount + dof2] * Y[
m_links[i].m_dofOffset + dof2];
1044 spatForceVecTemps[0] = zeroAccSpatFrc[i+1] + spatInertia[i+1] * spatCoriolisAcc[i];
1046 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1050 spatForceVecTemps[0] += hDof * invD_times_Y[dof];
1055 zeroAccSpatFrc[parent+1] += spatForceVecTemps[1];
1079 spatAcc[0] = -result;
1084 for (
int i = 0; i < num_links; ++i)
1092 const int parent =
m_links[i].m_parent;
1095 fromParent.
transform(spatAcc[parent+1], spatAcc[i+1]);
1097 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1101 Y_minus_hT_a[dof] = Y[
m_links[i].m_dofOffset + dof] - spatAcc[i+1].
dot(hDof);
1108 spatAcc[i+1] += spatCoriolisAcc[i];
1110 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1111 spatAcc[i+1] +=
m_links[i].m_axes[dof] * joint_accel[
m_links[i].m_dofOffset + dof];
1113 if (
m_links[i].m_jointFeedback)
1117 btVector3 angularBotVec = (spatInertia[i+1]*spatAcc[i+1]+zeroAccSpatFrc[i+1]).m_bottomVec;
1118 btVector3 linearTopVec = (spatInertia[i+1]*spatAcc[i+1]+zeroAccSpatFrc[i+1]).m_topVec;
1125 angularBotVec = angularBotVec - linearTopVec.
cross(
m_links[i].m_dVector);
1131 if (isConstraintPass)
1133 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec +=
m_links[i].m_cachedWorldTransform.getBasis()*angularBotVec;
1134 m_links[i].m_jointFeedback->m_reactionForces.m_topVec +=
m_links[i].m_cachedWorldTransform.getBasis()*linearTopVec;
1137 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec =
m_links[i].m_cachedWorldTransform.getBasis()*angularBotVec;
1138 m_links[i].m_jointFeedback->m_reactionForces.m_topVec =
m_links[i].m_cachedWorldTransform.getBasis()*linearTopVec;
1142 if (isConstraintPass)
1144 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec += angularBotVec;
1145 m_links[i].m_jointFeedback->m_reactionForces.m_topVec += linearTopVec;
1150 m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec = angularBotVec;
1151 m_links[i].m_jointFeedback->m_reactionForces.m_topVec = linearTopVec;
1160 output[0] = omegadot_out[0];
1161 output[1] = omegadot_out[1];
1162 output[2] = omegadot_out[2];
1189 if (!isConstraintPass)
1225 for (
int i = 0; i < num_links; ++i)
1227 const int parent =
m_links[i].m_parent;
1232 fromWorld.
m_rotMat = rot_from_world[i+1];
1235 fromParent.
transform(spatVel[parent+1], spatVel[i+1]);
1243 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1247 spatVel[i+1] += spatJointVel;
1276 for (
int i=0;i<6;i++)
1289 btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
1298 btVector3 vtop = invI_upper_left*rhs_top;
1300 tmp = invIupper_right * rhs_bot;
1302 btVector3 vbot = invI_lower_left*rhs_top;
1303 tmp = invI_lower_right * rhs_bot;
1305 result[0] = vtop[0];
1306 result[1] = vtop[1];
1307 result[2] = vtop[2];
1308 result[3] = vbot[0];
1309 result[4] = vbot[1];
1310 result[5] = vbot[2];
1340 btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
1364 for (
int row = 0; row < rowsA; row++)
1366 for (
int col = 0; col < colsB; col++)
1368 pC[row * colsB + col] = 0.f;
1369 for (
int inner = 0; inner < rowsB; inner++)
1371 pC[row * colsB + col] += pA[row * colsA + inner] * pB[col + inner * colsB];
1386 scratch_v.
resize(4*num_links + 4);
1393 v_ptr += num_links * 2 + 2;
1402 v_ptr += num_links * 2 + 2;
1427 fromParent.
m_rotMat = rot_from_parent[0];
1430 for (
int i = 0; i < num_links; ++i)
1432 zeroAccSpatFrc[i+1].
setZero();
1437 for (
int i = num_links - 1; i >= 0; --i)
1439 const int parent =
m_links[i].m_parent;
1442 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1444 Y[
m_links[i].m_dofOffset + dof] = force[6 +
m_links[i].m_dofOffset + dof]
1445 -
m_links[i].m_axes[dof].dot(zeroAccSpatFrc[i+1])
1449 btVector3 in_top, in_bottom, out_top, out_bottom;
1452 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1454 invD_times_Y[dof] = 0.f;
1456 for(
int dof2 = 0; dof2 <
m_links[i].m_dofCount; ++dof2)
1458 invD_times_Y[dof] += invDi[dof *
m_links[i].m_dofCount + dof2] * Y[
m_links[i].m_dofOffset + dof2];
1463 spatForceVecTemps[0] = zeroAccSpatFrc[i+1];
1465 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1469 spatForceVecTemps[0] += hDof * invD_times_Y[dof];
1475 zeroAccSpatFrc[parent+1] += spatForceVecTemps[1];
1492 spatAcc[0] = -result;
1497 for (
int i = 0; i < num_links; ++i)
1499 const int parent =
m_links[i].m_parent;
1502 fromParent.
transform(spatAcc[parent+1], spatAcc[i+1]);
1504 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1508 Y_minus_hT_a[dof] = Y[
m_links[i].m_dofOffset + dof] - spatAcc[i+1].
dot(hDof);
1514 for(
int dof = 0; dof <
m_links[i].m_dofCount; ++dof)
1515 spatAcc[i+1] +=
m_links[i].m_axes[dof] * joint_accel[
m_links[i].m_dofOffset + dof];
1521 output[0] = omegadot_out[0];
1522 output[1] = omegadot_out[1];
1523 output[2] = omegadot_out[2];
1552 pBasePos[0] += dt * pBaseVel[0];
1553 pBasePos[1] += dt * pBaseVel[1];
1554 pBasePos[2] += dt * pBaseVel[2];
1584 axis = angvel*(
btScalar(0.5)*dt-(dt*dt*dt)*(
btScalar(0.020833333333))*fAngle*fAngle );
1608 btQuaternion baseQuat; baseQuat.
setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
1609 btVector3 baseOmega; baseOmega.
setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
1610 pQuatUpdateFun(baseOmega, baseQuat,
true, dt);
1611 pBaseQuat[0] = baseQuat.
x();
1612 pBaseQuat[1] = baseQuat.
y();
1613 pBaseQuat[2] = baseQuat.
z();
1614 pBaseQuat[3] = baseQuat.
w();
1627 for (
int i = 0; i < num_links; ++i)
1632 switch(
m_links[i].m_jointType)
1638 pJointPos[0] += dt * jointVel;
1643 btVector3 jointVel; jointVel.
setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
1644 btQuaternion jointOri; jointOri.
setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
1645 pQuatUpdateFun(jointVel, jointOri,
false, dt);
1646 pJointPos[0] = jointOri.
x(); pJointPos[1] = jointOri.
y(); pJointPos[2] = jointOri.
z(); pJointPos[3] = jointOri.
w();
1655 pJointPos[1] +=
m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
1656 pJointPos[2] +=
m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
1666 m_links[i].updateCacheMultiDof(pq);
1669 pq +=
m_links[i].m_posVarCount;
1687 scratch_v.
resize(3*num_links + 3);
1688 scratch_m.
resize(num_links + 1);
1691 btVector3 * p_minus_com_local = v_ptr; v_ptr += num_links + 1;
1692 btVector3 * n_local_lin = v_ptr; v_ptr += num_links + 1;
1693 btVector3 * n_local_ang = v_ptr; v_ptr += num_links + 1;
1702 const btVector3 &normal_lin_world = normal_lin;
1703 const btVector3 &normal_ang_world = normal_ang;
1709 omega_coeffs_world = p_minus_com_world.
cross(normal_lin_world);
1710 jac[0] = omega_coeffs_world[0] + normal_ang_world[0];
1711 jac[1] = omega_coeffs_world[1] + normal_ang_world[1];
1712 jac[2] = omega_coeffs_world[2] + normal_ang_world[2];
1714 jac[3] = normal_lin_world[0];
1715 jac[4] = normal_lin_world[1];
1716 jac[5] = normal_lin_world[2];
1719 p_minus_com_local[0] = rot_from_world[0] * p_minus_com_world;
1720 n_local_lin[0] = rot_from_world[0] * normal_lin_world;
1721 n_local_ang[0] = rot_from_world[0] * normal_ang_world;
1730 if (num_links > 0 && link > -1) {
1737 for (
int i = 0; i < num_links; ++i) {
1740 const int parent =
m_links[i].m_parent;
1742 rot_from_world[i+1] = mtx * rot_from_world[parent+1];
1744 n_local_lin[i+1] = mtx * n_local_lin[parent+1];
1745 n_local_ang[i+1] = mtx * n_local_ang[parent+1];
1746 p_minus_com_local[i+1] = mtx * p_minus_com_local[parent+1] -
m_links[i].m_cachedRVector;
1749 switch(
m_links[i].m_jointType)
1753 results[
m_links[i].m_dofOffset] = n_local_lin[i+1].dot(
m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]) +
m_links[i].getAxisBottom(0));
1754 results[
m_links[i].m_dofOffset] += n_local_ang[i+1].dot(
m_links[i].getAxisTop(0));
1759 results[
m_links[i].m_dofOffset] = n_local_lin[i+1].dot(
m_links[i].getAxisBottom(0));
1764 results[
m_links[i].m_dofOffset + 0] = n_local_lin[i+1].dot(
m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]) +
m_links[i].getAxisBottom(0));
1765 results[
m_links[i].m_dofOffset + 1] = n_local_lin[i+1].dot(
m_links[i].getAxisTop(1).cross(p_minus_com_local[i+1]) +
m_links[i].getAxisBottom(1));
1766 results[
m_links[i].m_dofOffset + 2] = n_local_lin[i+1].dot(
m_links[i].getAxisTop(2).cross(p_minus_com_local[i+1]) +
m_links[i].getAxisBottom(2));
1768 results[
m_links[i].m_dofOffset + 0] += n_local_ang[i+1].dot(
m_links[i].getAxisTop(0));
1769 results[
m_links[i].m_dofOffset + 1] += n_local_ang[i+1].dot(
m_links[i].getAxisTop(1));
1770 results[
m_links[i].m_dofOffset + 2] += n_local_ang[i+1].dot(
m_links[i].getAxisTop(2));
1776 results[
m_links[i].m_dofOffset + 0] = n_local_lin[i+1].dot(
m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]));
1777 results[
m_links[i].m_dofOffset + 1] = n_local_lin[i+1].dot(
m_links[i].getAxisBottom(1));
1778 results[
m_links[i].m_dofOffset + 2] = n_local_lin[i+1].dot(
m_links[i].getAxisBottom(2));
1793 for(
int dof = 0; dof <
m_links[link].m_dofCount; ++dof)
1795 jac[6 +
m_links[link].m_dofOffset + dof] = results[
m_links[link].m_dofOffset + dof];
1799 link =
m_links[link].m_parent;
1834 if (motion < SLEEP_EPSILON) {
1857 for (
int i = 0; i < num_links; ++i)
1864 world_to_local.
resize(nLinks+1);
1865 local_origin.
resize(nLinks+1);
1882 btScalar quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
1905 btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
1935 btScalar quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
1962 if (mbd->m_baseName)
1968 if (mbd->m_numLinks)
1971 int numElem = mbd->m_numLinks;
1974 for (
int i=0;i<numElem;i++,memPtr++)
2005 for (
int posvar = 0; posvar < numPosVar;posvar++)
2014 if (memPtr->m_linkName)
2022 if (memPtr->m_jointName)
2035 #ifdef BT_USE_DOUBLE_PRECISION 2036 memset(mbd->m_padding, 0,
sizeof(mbd->m_padding));
void setupPlanar(int i, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &rotationAxis, const btVector3 &parentComToThisComOffset, bool disableParentCollision=false)
const btScalar & x() const
Return the x value.
btScalar m_jointLowerLimit
btQuaternion m_zeroRotParentToThis
void clearConstraintForces()
void setupRevolute(int linkIndex, btScalar mass, const btVector3 &inertia, int parentIndex, const btQuaternion &rotParentToThis, const btVector3 &jointAxis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool disableParentCollision=false)
const btVector3 & getBasePos() const
btVector3 localPosToWorld(int i, const btVector3 &vec) const
btAlignedObjectArray< btMatrix3x3 > m_matrixBuf
void setupFixed(int linkIndex, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool deprecatedDisableParentCollision=true)
const btMultiBodyLinkCollider * getBaseCollider() const
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
const btVector3 & getLinear() const
const btVector3 & getAxisTop(int dof) const
These spatial algebra classes are used for btMultiBody, see BulletDynamics/Featherstone.
#define btMultiBodyLinkDataName
btScalar btSin(btScalar x)
void stepPositionsMultiDof(btScalar dt, btScalar *pq=0, btScalar *pqd=0)
eFeatherstoneJointType m_jointType
class btMultiBodyLinkCollider * m_collider
void compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const
bool gDisableDeactivation
void computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar dt, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v, btAlignedObjectArray< btMatrix3x3 > &scratch_m, bool isConstraintPass=false)
virtual void * getUniquePointer(void *oldPtr)=0
bool gJointFeedbackInWorldSpace
todo: determine if we need these options. If so, make a proper API, otherwise delete those globals ...
void setupSpherical(int linkIndex, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool disableParentCollision=false)
void addLinkConstraintForce(int i, const btVector3 &f)
const btQuaternion & getWorldToBaseRot() const
btMatrix3x3 m_cachedInertiaLowerRight
btScalar * getJointVelMultiDof(int i)
void addLinkForce(int i, const btVector3 &f)
void solveImatrix(const btVector3 &rhs_top, const btVector3 &rhs_bot, btScalar result[6]) const
void addLinear(const btVector3 &linear)
btVector3 worldPosToLocal(int i, const btVector3 &vec) const
bool gJointFeedbackInJointFrame
void calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v) const
void setJointPosMultiDof(int i, btScalar *q)
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
void updateCollisionObjectWorldTransforms(btAlignedObjectArray< btQuaternion > &scratch_q, btAlignedObjectArray< btVector3 > &scratch_m)
btVector3 m_baseConstraintTorque
#define btCollisionObjectData
void applyDeltaVeeMultiDof(const btScalar *delta_vee, btScalar multiplier)
btQuaternion inverse(const btQuaternion &q)
Return the inverse of a quaternion.
const btVector3 & getLinkTorque(int i) const
btAlignedObjectArray< btScalar > m_deltaV
btVector3 getBaseOmega() const
btMatrix3x3 outerProduct(const btVector3 &v0, const btVector3 &v1)
const btVector3 & getAxisBottom(int dof) const
void clearForcesAndTorques()
btVector3 quatRotate(const btQuaternion &rotation, const btVector3 &v)
btVector3 normalized() const
Return a normalized version of this vector.
btMatrix3x3 transpose() const
Return the transpose of the matrix.
btVector3 getColumn(int i) const
Get a column of the matrix as a vector.
void addAngular(const btVector3 &angular)
void addLinkConstraintTorque(int i, const btVector3 &t)
btMatrix3x3 localFrameToWorld(int i, const btMatrix3x3 &mat) const
void forwardKinematics(btAlignedObjectArray< btQuaternion > &scratch_q, btAlignedObjectArray< btVector3 > &scratch_m)
virtual int calculateSerializeBufferSize() const
btMatrix3x3 m_cachedInertiaTopLeft
void setupPrismatic(int i, btScalar mass, const btVector3 &inertia, int parent, const btQuaternion &rotParentToThis, const btVector3 &jointAxis, const btVector3 &parentComToThisPivotOffset, const btVector3 &thisPivotToThisComOffset, bool disableParentCollision)
btScalar m_jointTorque[6]
const btVector3 & getBaseInertia() const
const btQuaternion & getParentToLocalRot(int i) const
btScalar m_jointUpperLimit
btTransform getBaseWorldTransform() const
const btVector3 & getLinear() const
const btScalar & x() const
Return the x value.
void setVector(const btVector3 &angular, const btVector3 &linear)
btMatrix3x3 m_cachedInertiaLowerLeft
btScalar getBaseMass() const
btQuaternion & normalize()
Normalize the quaternion Such that x^2 + y^2 + z^2 +w^2 = 1.
btScalar getJointTorque(int i) const
void addLinkTorque(int i, const btVector3 &t)
const btVector3 & getAngular() const
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
btScalar dot(const btVector3 &v) const
Return the dot product.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Set x,y,z and zero w.
void setLinear(const btVector3 &linear)
int getParent(int link_num) const
const btScalar & y() const
Return the y value.
const btScalar & z() const
Return the z value.
bool m_cachedInertiaValid
void addJointTorque(int i, btScalar Q)
void setValue(const btScalar &xx, const btScalar &xy, const btScalar &xz, const btScalar &yx, const btScalar &yy, const btScalar &yz, const btScalar &zx, const btScalar &zy, const btScalar &zz)
Set the values of the matrix explicitly (row major)
virtual const char * serialize(void *dataBuffer, class btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
void setJointVel(int i, btScalar qdot)
const btScalar & z() const
Return the z value.
void setAngular(const btVector3 &angular)
void setJointPos(int i, btScalar q)
void setWorldTransform(const btTransform &worldTrans)
void checkMotionAndSleepIfRequired(btScalar timestep)
btVector3 m_baseConstraintForce
const btMultibodyLink & getLink(int index) const
btVector3 can be used to represent 3D points and vectors.
bool m_internalNeedsJointFeedback
the m_needsJointFeedback gets updated/computed during the stepVelocitiesMultiDof and it for internal ...
btMultiBody(int n_links, btScalar mass, const btVector3 &inertia, bool fixedBase, bool canSleep, bool deprecatedMultiDof=true)
int size() const
return the number of elements in the array
void serialize(struct btVector3Data &dataOut) const
btAlignedObjectArray< btScalar > m_realBuf
void cross(const SpatialVectorType &b, SpatialVectorType &out) const
void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
btScalar dot(const btSpatialForceVector &b) const
virtual void finalizeChunk(btChunk *chunk, const char *structType, int chunkCode, void *oldPtr)=0
void updateLinksDofOffsets()
const btVector3 & getAngular() const
#define btMultiBodyDataName
#define btMultiBodyData
serialization data, don't change them if you are not familiar with the details of the serialization m...
bool m_useGlobalVelocities
btVector3 localDirToWorld(int i, const btVector3 &vec) const
virtual void serializeName(const char *ptr)=0
void resize(int newsize, const T &fillData=T())
void addJointTorqueMultiDof(int i, int dof, btScalar Q)
void mulMatrix(btScalar *pA, btScalar *pB, int rowsA, int colsA, int rowsB, int colsB, btScalar *pC) const
btScalar getJointPos(int i) const
btVector3 getAngularMomentum() const
const btVector3 & getLinkForce(int i) const
btMatrix3x3 m_bottomLeftMat
void setVector(const btVector3 &angular, const btVector3 &linear)
btAlignedObjectArray< btVector3 > m_vectorBuf
btTransform m_cachedWorldTransform
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
const btScalar & y() const
Return the y value.
void fillConstraintJacobianMultiDof(int link, const btVector3 &contact_point, const btVector3 &normal_ang, const btVector3 &normal_lin, btScalar *jac, btAlignedObjectArray< btScalar > &scratch_r, btAlignedObjectArray< btVector3 > &scratch_v, btAlignedObjectArray< btMatrix3x3 > &scratch_m) const
void setJointVelMultiDof(int i, btScalar *qdot)
btScalar getLinkMass(int i) const
btScalar getKineticEnergy() const
virtual const char * findNameForPointer(const void *ptr) const =0
The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatr...
void addVector(const btVector3 &angular, const btVector3 &linear)
btScalar getJointVel(int i) const
btMatrix3x3 inverse() const
Return the inverse of the matrix.
btVector3 worldDirToLocal(int i, const btVector3 &vec) const
btAlignedObjectArray< btMultibodyLink > m_links
btScalar * getJointTorqueMultiDof(int i)
#define btMultiBodyLinkData
const btScalar & w() const
Return the w value.
void serialize(struct btQuaternionData &dataOut) const
btMatrix3x3 m_cachedInertiaTopRight
btScalar * getJointPosMultiDof(int i)
virtual btChunk * allocate(size_t size, int numElements)=0
const btVector3 & getLinkInertia(int i) const
const btVector3 & getRVector(int i) const
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar m_angularDamping
btScalar btCos(btScalar x)
btMatrix3x3 m_topRightMat
btScalar m_jointMaxVelocity
btScalar length() const
Return the length of the vector.
const btVector3 getBaseVel() const